Skip to main content

Advertisement

Log in

Association of ITGA3 gene polymorphisms with susceptibility and clinicopathological characteristics of osteosarcoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Integrin controls cell adhesion to extracellular matrix and plays an important role in regulating the proliferation and apoptosis of cells. In order to explore the role of ITGA3 gene polymorphisms in the pathogenesis and clinicopathological characteristics of osteosarcoma, we embarked on a study including a group of 118 patients and a group of 126 healthy controls. TaqMan PCR genotyping technology was used to detect the genotypes of ITGA3 gene SNPs (rs2230392, rs2285524 and rs16948627) in the peripheral blood. Then, associations of the SNP (rs2230392, rs2285524 and rs16948627) genotypes with the incidence risk and tumor characteristics of osteosarcoma were evaluated. A significant difference (P = 0.02) in the genotype frequency distribution of rs2230392 was observed between case and control groups. The analysis showed that patients carrying AA genotype had a higher risk of osteosarcoma (OR 2.34, 95 % CI 1.18–4.64) than those with GG genotype. Regarding rs2230392, men carrying AA genotype had a higher risk of osteosarcoma (OR 3.37, 95 % CI 1.25–9.11). Compared with those with GG genotype, patients carrying AA genotype had a twofold increased risk of osteosarcoma metastasis (OR 2.46, 95 % CI 1.09–5.57). Survival analysis showed that for rs2230392, survival time of osteosarcoma patients with three different genotypes was significantly different. Polymorphisms of ITGA3 gene rs2230392 may affect the incidence, metastasis and survival of osteosarcoma, which may clinically become a new target for predicting the risk of osteosarcoma, and have prognostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis. 2007;2:6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Unni KK. Osteosarcoma of bone. J Orthop Sci. 1998;3(5):287–94.

    Article  CAS  PubMed  Google Scholar 

  3. Subbiah V, Kurzrock R. Phase 1 clinical trials for sarcomas: the cutting edge. Curr Opin Oncol. 2011;23(4):352–60.

    Article  CAS  PubMed  Google Scholar 

  4. Lu BJ, Wang YQ, Wei XJ, Rong LQ, Wei D, Yan CM, et al. Expression of WNT-5a and ROR2 correlates with disease severity in osteosarcoma. Mol Med Rep. 2012;5(4):1033–6.

    CAS  PubMed  Google Scholar 

  5. PosthumaDeBoer J, Witlox MA, Kaspers GJ, van Royen BJ. Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature. Clin Exp Metastasis. 2011;28(5):493–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Foster L, Dall GF, Reid R, Wallace WH, Porter DE. Twentieth-century survival from osteosarcoma in childhood. Trends from 1933 to 2004. J Bone Joint Surg Br. 2007;89(9):1234–8.

    Article  CAS  PubMed  Google Scholar 

  7. Chou AJ, Geller DS, Gorlick R. Therapy for osteosarcoma: where do we go from here? Paediatr Drugs. 2008;10(5):315–27.

    Article  PubMed  Google Scholar 

  8. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–99.

    Article  CAS  PubMed  Google Scholar 

  9. Taddei I, Faraldo MM, Teuliere J, Deugnier MA, Thiery JP, Glukhova MA. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia. 2003;8(4):383–94.

    Article  PubMed  Google Scholar 

  10. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2(2):91–100.

    Article  PubMed  Google Scholar 

  11. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schneider JG, Amend SR, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone. 2011;48(1):54–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kreidberg JA. Functions of alpha3beta1 integrin. Curr Opin Cell Biol. 2000;12(5):548–53.

    Article  CAS  PubMed  Google Scholar 

  14. Tsuji T. Physiological and pathological roles of alpha3beta1 integrin. J Membr Biol. 2004;200(3):115–32.

    Article  CAS  PubMed  Google Scholar 

  15. Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R, et al. The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer. 2000;87(3):336–42.

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, et al. Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol. 2004;164(6):935–41.

    Article  CAS  PubMed  Google Scholar 

  17. Lamar JM, Pumiglia KM, DiPersio CM. An immortalization-dependent switch in integrin function up-regulates MMP-9 to enhance tumor cell invasion. Cancer Res. 2008;68(18):7371–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mercurio AM, Bachelder RE, Chung J, O’Connor KL, Rabinovitz I, Shaw LM, et al. Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia. 2001;6(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  19. Chia J, Kusuma N, Anderson R, Parker B, Bidwell B, Zamurs L, et al. Evidence for a role of tumor-derived laminin-511 in the metastatic progression of breast cancer. Am J Pathol. 2007;170(6):2135–48.

    Article  CAS  PubMed  Google Scholar 

  20. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007;7(5):370–80.

    Article  CAS  PubMed  Google Scholar 

  21. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  CAS  PubMed  Google Scholar 

  22. Savage SA, Mirabello L, Wang Z, Gastier-Foster JM, Gorlick R, Khanna C, et al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat Genet. 2013;45(7):799–803.

    Article  CAS  PubMed  Google Scholar 

  23. Kahler AK, Djurovic S, Kulle B, Jonsson EG, Agartz I, Hall H, et al. Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147B(7):1089–100.

    Article  Google Scholar 

  24. Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis. 2008;29(7):1394–9.

    Article  CAS  PubMed  Google Scholar 

  25. Langsenlehner U, Renner W, Yazdani-Biuki B, Eder T, Wascher TC, Paulweber B, et al. Integrin alpha-2 and beta-3 gene polymorphisms and breast cancer risk. Breast Cancer Res Treat. 2006;97(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  26. Naumov VA, Generozov EV, Solovyov YN, Aliev MD, Kushlinsky NE. Association of FGFR3 and MDM2 gene nucleotide polymorphisms with bone tumors. Bull Exp Biol Med. 2012;153(6):869–73.

    Article  CAS  PubMed  Google Scholar 

  27. Hao T, Feng W, Zhang J, Sun YJ, Wang G. Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac J Cancer Prev. 2012;13(8):3821–4.

    Article  PubMed  Google Scholar 

  28. Caronia D, Patino-Garcia A, Perez-Martinez A, Pita G, Moreno LT, Zalacain-Diez M, et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study. PLoS ONE. 2011;6(10):e26091.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu Y, Lv B, He Z, Zhou Y, Han C, Shi G, et al. Lysyl oxidase polymorphisms and susceptibility to osteosarcoma. PLoS ONE. 2012;7(7):e41610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Minde DP, Anvarian Z, Rudiger SG, Maurice MM. Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer? Mol Cancer. 2011;10:101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. Integrin beta3 Leu33Pro homozygosity and risk of cancer. J Natl Cancer Inst. 2003;95(15):1150–7.

    Article  CAS  PubMed  Google Scholar 

  32. Choma DP, Milano V, Pumiglia KM, DiPersio CM. Integrin alpha3beta1-dependent activation of FAK/Src regulates Rac1-mediated keratinocyte polarization on laminin-5. J Invest Dermatol. 2007;127(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  33. Raymond K, Cagnet S, Kreft M, Janssen H, Sonnenberg A, Glukhova MA. Control of mammary myoepithelial cell contractile function by alpha3beta1 integrin signalling. EMBO J. 2011;30(10):1896–906.

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol. 2002;4(4):E65–8.

    Article  CAS  PubMed  Google Scholar 

  35. Playford MP, Schaller MD. The interplay between Src and integrins in normal and tumor biology. Oncogene. 2004;23(48):7928–46.

    Article  CAS  PubMed  Google Scholar 

  36. Brunton VG, Frame MC. Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol. 2008;8(4):427–32.

    Article  CAS  PubMed  Google Scholar 

  37. McCawley LJ, Matrisian LM. Tumor progression: defining the soil round the tumor seed. Curr Biol. 2001;11(1):R25–7.

    Article  CAS  PubMed  Google Scholar 

  38. Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Beliveau A, Mott JD, Lo A, Chen EI, Koller AA, Yaswen P, et al. Raf-induced MMP9 disrupts tissue architecture of human breast cells in three-dimensional culture and is necessary for tumor growth in vivo. Genes Dev. 2010;24(24):2800–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 81160323) and the Guangxi Innovative Program of Graduate Education (Grant No. YCSZ2013035).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., He, M., Zhao, J. et al. Association of ITGA3 gene polymorphisms with susceptibility and clinicopathological characteristics of osteosarcoma. Med Oncol 31, 826 (2014). https://doi.org/10.1007/s12032-013-0826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0826-y

Keywords

Navigation