Skip to main content

Advertisement

Log in

Plasma proteomics analysis of tamoxifen resistance in breast cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Due to ease accessibility, exploring plasma for candidate cancer biomarkers is of great interest to molecular biologist and physicians. In breast cancer, the development of tamoxifen resistance (TR) is among the major causes of recurrence and mortality. Therefore, the identification of novel biomarkers that are linked to TR is of great interest and the subject of intensive research. Here, we exploited the power of two-dimensional gel electrophoresis coupled with protein identification using tandem mass spectrometry to identify plasma proteome signatures associated with TR. Comparative proteomics analysis resulted in the identification of 15 statistically significant spots, which were up-/downregulated after tamoxifen therapy. MASCOT search of the mass spectrometry generated spectral data resulted in the identification of 9 proteins. Several differentially expressed proteins such as clusterin, serum amyloid A, serpin B4, and transthyretin are already known to be involved in cancer incidence and progression. The possible involvement of these candidate proteins in conferring TR and their potential usefulness as plasma biomarkers for predicting response to tamoxifen treatment has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. He YJ, Wu JZ, Ji MH, Ma T, Qiao EQ, Ma R, et al. miR-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer. Exp Ther Med. 2013;5:813–8.

    PubMed Central  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998;339:1609–18.

    Article  CAS  PubMed  Google Scholar 

  4. Haran EF, Maretzek AF, Goldberg I, Horowitz A, Degani H. Tamoxifen enhances cell death in implanted MCF7 breast cancer by inhibiting endothelium growth. Cancer Res. 1994;54:5511–4.

    CAS  PubMed  Google Scholar 

  5. Hoskins JM, Carey LA, McLeod HL. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer. 2009;9:576–86.

    Article  CAS  PubMed  Google Scholar 

  6. Motamedi S, Majidzadeh K, Mazaheri M, Anbiaie R, Mortazavizadeh SM, Esmaeili R. Tamoxifen resistance and CYP2D6 copy numbers in breast cancer patients. Asian Pac J Cancer Prev. 2012;13:6101–4.

    Article  PubMed  Google Scholar 

  7. Karnik PS, Kulkarni S, Liu XP, Budd GT, Bukowski RM. Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res. 1994;54:349–53.

    CAS  PubMed  Google Scholar 

  8. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9:631–43.

    Article  CAS  PubMed  Google Scholar 

  9. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    Article  CAS  PubMed  Google Scholar 

  10. Rajput S, Kumar BNP, Sarkar S, Das S, Azab B, Santhekadur PK, et al. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS ONE. 2013;8:e61342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283:29897–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283:31079–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  14. Umar A, Kang H, Timmermans AM, Look MP, Meijer-van Gelder ME, den Bakker MA, et al. Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer. Mol Cell Proteomics. 2009;8:1278–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jacobs JM, Adkins JN, Qian W-J, Liu T, Shen Y, Camp DG, et al. Utilizing human blood plasma for proteomic biomarker discovery†. J Proteome Res. 2005;4:1073–85.

    Article  CAS  PubMed  Google Scholar 

  16. Bandow JE. Comparison of protein enrichment strategies for proteome analysis of plasma. Proteomics. 2010;10:1416–25.

    Article  CAS  PubMed  Google Scholar 

  17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  18. Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E. Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sc. 2012;10:3.

    Article  CAS  Google Scholar 

  19. Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis (Weinheim, Fed Repub Ger). 1987;8:93–9.

    CAS  Google Scholar 

  20. Neubauer H, Clare SE, Kurek R, Fehm T, Wallwiener D, Sotlar K, et al. Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis. 2006;27:1840–52.

    Article  CAS  PubMed  Google Scholar 

  21. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5:3226–45.

    Article  CAS  PubMed  Google Scholar 

  22. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5:3226–45.

    Article  CAS  PubMed  Google Scholar 

  23. So A, Sinnemann S, Huntsman D, Fazli L, Gleave M. Knockdown of the cytoprotective chaperone, clusterin, chemosensitizes human breast cancer cells both in vitro and in vivo. Mol Cancer Ther. 2005;4:1837–49.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol. 1995;27:633–45.

    Article  CAS  PubMed  Google Scholar 

  25. Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK. Overexpression of clusterin in human breast carcinoma. Am J Pathol. 2000;157:393–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lau SH, Sham JS, Xie D, Tzang CH, Tang D, Ma N, et al. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene. 2006;25:1242–50.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Q, Wang Z, Zhang K, Liu X, Cao W, Zhang L, et al. Clusterin confers gemcitabine resistance in pancreatic cancer. World J Surg Oncol. 2011;9:59.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Andersen CL, Schepeler T, Thorsen K, Birkenkamp-Demtroder K, Mansilla F, Aaltonen LA, et al. Clusterin expression in normal mucosa and colorectal cancer. Mol Cell Proteomics. 2007;6:1039–48.

    Article  CAS  PubMed  Google Scholar 

  29. Xie D, Lau SH, Sham JS, Wu QL, Fang Y, Liang LZ, et al. Up-regulated expression of cytoplasmic clusterin in human ovarian carcinoma. Cancer. 2005;103:277–83.

    Article  PubMed  Google Scholar 

  30. Rizzi F, Bettuzzi S. Clusterin (CLU) and prostate cancer. Adv Cancer Res. 2009;105:1–19.

    Article  CAS  PubMed  Google Scholar 

  31. Steinberg J, Oyasu R, Lang S, Sintich S, Rademaker A, Lee C, et al. Intracellular levels of SGP-2 (clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res. 1997;3:1707–11.

    CAS  PubMed  Google Scholar 

  32. Miyake H, Gleave M, Kamidono S, Hara I. Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence. Urology. 2002;59:150–4.

    Article  PubMed  Google Scholar 

  33. Zhang S, Zhang D, Zhu Y, Guo H, Zhao X, Sun B. Clusterin expression and univariate analysis of overall survival in human breast cancer. Technol Cancer Res Treat. 2006;5:573–8.

    Article  CAS  PubMed  Google Scholar 

  34. Doustjalali SR, Yusof R, Yip CH, Looi LM, Pillay B, Hashim OH. Aberrant expression of acute-phase reactant proteins in sera and breast lesions of patients with malignant and benign breast tumors. Electrophoresis. 2004;25:2392–401.

    Article  CAS  PubMed  Google Scholar 

  35. Flanagan L, Whyte L, Chatterjee N, Tenniswood M. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer. BMC Cancer. 2010;10:107.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Li J, Jia L, Zhao P, Jiang Y, Zhong S, Chen D. Stable knockdown of clusterin by vector based RNA interference in a human breast cancer cell line inhibits tumour cell invasion and metastasis. J Int Med Res. 2012;40:545–55.

    Article  CAS  PubMed  Google Scholar 

  37. Chen H, Tritton TR, Kenny N, Absher M, Chiu JF. Tamoxifen induces TGF-beta 1 activity and apoptosis of human MCF-7 breast cancer cells in vitro. J Cell Biochem. 1996;61:9–17.

    Article  CAS  PubMed  Google Scholar 

  38. Warri AM, Huovinen RL, Laine AM, Martikainen PM, Harkonen PL. Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst. 1993;85:1412–8.

    Article  CAS  PubMed  Google Scholar 

  39. Biroccio A, D’Angelo C, Jansen B, Gleave ME, Zupi G. Antisense clusterin oligodeoxynucleotides increase the response of HER-2 gene amplified breast cancer cells to Trastuzumab. J Cell Physiol. 2005;204:463–9.

    Article  CAS  PubMed  Google Scholar 

  40. Malle E, De Beer FC. Human serum amyloid A (SAA) protein: a prominent acute-phase reactant for clinical practice. Eur J Clin Invest. 1996;26:427–35.

    Article  CAS  PubMed  Google Scholar 

  41. Yamada T. Serum amyloid A (SAA): a concise review of biology, assay methods and clinical usefulness. Clin Chem Lab Med. 1999;37:381–8.

    Article  CAS  PubMed  Google Scholar 

  42. McArdle PA, Mir K, Almushatat AS, Wallace AM, Underwood MA, McMillan DC. Systemic inflammatory response, prostate-specific antigen and survival in patients with metastatic prostate cancer. Urol Int. 2006;77:127–9.

    Article  CAS  PubMed  Google Scholar 

  43. McMillan DC, Canna K, McArdle CS. Systemic inflammatory response predicts survival following curative resection of colorectal cancer. Br J Surg. 2003;90:215–9.

    Article  CAS  PubMed  Google Scholar 

  44. Scott HR, McMillan DC, Forrest LM, Brown DJ, McArdle CS, Milroy R. The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer. Br J Cancer. 2002;87:264–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol. 2009;27:3437–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zhang G, Sun X, Lv H, Yang X, Kang X. Serum amyloid A: a new potential serum marker correlated with the stage of breast cancer. Oncol Lett. 2012;3:940–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Findeisen P, Zapatka M, Peccerella T, Matzk H, Neumaier M, Schadendorf D, et al. Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol. 2009;27:2199–208.

    Article  CAS  PubMed  Google Scholar 

  48. Cho WC, Yip TT, Cheng WW, Au JS. Serum amyloid A is elevated in the serum of lung cancer patients with poor prognosis. Br J Cancer. 2010;102:1731–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Cocco E, Bellone S, El-Sahwi K, Cargnelutti M, Buza N, Tavassoli FA, et al. Serum amyloid A: a novel biomarker for endometrial cancer. Cancer. 2010;116:843–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wang JY, Zheng YZ, Yang J, Lin YH, Dai SQ, Zhang G, et al. Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer. 2012;12:365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Chan DC, Chen CJ, Chu HC, Chang WK, Yu JC, Chen YJ, et al. Evaluation of serum amyloid A as a biomarker for gastric cancer. Ann Surg Oncol. 2007;14:84–93.

    Article  PubMed  Google Scholar 

  52. Knebel FH, Albuquerque RC, Massaro RR, Maria-Engler SS, Campa A. Dual effect of serum amyloid A on the invasiveness of glioma cells. Mediat Inflamm. 2013;2013:10.

    Article  Google Scholar 

  53. Moshkovskii SA. Why do cancer cells produce serum amyloid A acute-phase protein? Biochemistry. 2012;77:339–41.

    CAS  PubMed  Google Scholar 

  54. Jijon HB, Madsen KL, Walker JW, Allard B, Jobin C. Serum amyloid A activates NF-kappaB and proinflammatory gene expression in human and murine intestinal epithelial cells. Eur J Immunol. 2005;35:718–26.

    Article  CAS  PubMed  Google Scholar 

  55. Koga T, Torigoshi T, Motokawa S, Miyashita T, Maeda Y, Nakamura M, et al. Serum amyloid A-induced IL-6 production by rheumatoid synoviocytes. FEBS Lett. 2008;582:579–85.

    Article  CAS  PubMed  Google Scholar 

  56. Urieli-Shoval S, Finci-Yeheskel Z, Dishon S, Galinsky D, Linke RP, Ariel I, et al. Expression of serum amyloid a in human ovarian epithelial tumors: implication for a role in ovarian tumorigenesis. J Histochem Cytochem. 2010;58:1015–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Mullan RH, Bresnihan B, Golden-Mason L, Markham T, O’Hara R, FitzGerald O, et al. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis Rheum. 2006;54:105–14.

    Article  CAS  PubMed  Google Scholar 

  58. Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature. 1989;341:162–4.

    Article  CAS  PubMed  Google Scholar 

  59. Chen YC, Pohl G, Wang TL, Morin PJ, Risberg B, Kristensen GB, et al. Apolipoprotein E is required for cell proliferation and survival in ovarian cancer. Cancer Res. 2005;65:331–7.

    CAS  PubMed  Google Scholar 

  60. Makarem N, Chandran U, Bandera EV, Parekh N. Dietary Fat in Breast Cancer Survival. Annu Rev Nutr. 2013;33:null.

  61. Vatten LJ, Foss OP, Kvinnsland S. Overall survival of breast cancer patients in relation to preclinically determined total serum cholesterol, body mass index, height and cigarette smoking: a population-based study. Eur J Cancer. 1991;27:641–6.

    Article  CAS  PubMed  Google Scholar 

  62. Dewar JA, Horobin JM, Preece PE, Tavendale R, Tunstall-Pedoe H, Wood RA. Long term effects of tamoxifen on blood lipid values in breast cancer. BMJ. 1992;305:225–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Love RR, Newcomb PA, Wiebe DA, Surawicz TS, Jordan VC, Carbone PP, et al. Effects of tamoxifen therapy on lipid and lipoprotein levels in postmenopausal patients with node-negative breast cancer. J Natl Cancer Inst. 1990;82:1327–32.

    Article  CAS  PubMed  Google Scholar 

  64. Kusama M, Miyauchi K, Aoyama H, Sano M, Kimura M, Mitsuyama S, et al. Effects of toremifene (TOR) and tamoxifen (TAM) on serum lipids in postmenopausal patients with breast cancer. Breast Cancer Res Treat. 2004;88:1–8.

    Article  CAS  PubMed  Google Scholar 

  65. Reckless J, Metcalfe JC, Grainger DJ. Tamoxifen decreases cholesterol sevenfold and abolishes lipid lesion development in apolipoprotein E knockout mice. Circulation. 1997;95:1542–8.

    Article  CAS  PubMed  Google Scholar 

  66. Custodio A, López-Farré A, Zamorano-León J, Mateos-Cáceres P, Macaya C, Caldés T, et al. Changes in the expression of plasma proteins associated with thrombosis in BRCA1 mutation carriers. J Cancer Res Clin Oncol. 2012;138:867–75.

    Article  CAS  PubMed  Google Scholar 

  67. Carrier JC, Deblois G, Champigny C, Levy E, Giguere V. Estrogen-related receptor alpha (ERRalpha) is a transcriptional regulator of apolipoprotein A-IV and controls lipid handling in the intestine. J Biol Chem. 2004;279:52052–8.

    Article  CAS  PubMed  Google Scholar 

  68. Escher N, Kaatz M, Melle C, Hipler C, Ziemer M, Driesch D, et al. Posttranslational modifications of transthyretin are serum markers in patients with mycosis fungoides. Neoplasia. 2007;9:254–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias-Eisner R. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics. 2005;5:4589–96.

    Article  CAS  PubMed  Google Scholar 

  70. Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, et al. Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics. 2005;5:4581–8.

    Article  CAS  PubMed  Google Scholar 

  71. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, et al. An overview of the serpin superfamily. Genome Biol. 2006;7:30.

    Article  Google Scholar 

  72. Kato H, Torigoe T. Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma. Cancer. 1977;40:1621–8.

    Article  CAS  PubMed  Google Scholar 

  73. Duk JM, de Bruijn HWA, Groenier KH, Hollema H, ten Hoor KA, Krans M, et al. Cancer of the uterine cervix: sensitivity and specificity of serum squamous cell carcinoma antigen determinations. Gynecol Oncol. 1990;39:186–94.

    Article  CAS  PubMed  Google Scholar 

  74. Molina R, Filella X, Auge JM, Fuentes R, Bover I, Rifa J, et al. Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol. 2003;24:209–18.

    Article  CAS  PubMed  Google Scholar 

  75. Catanzaro JM, Guerriero JL, Liu J, Ullman E, Sheshadri N, Chen JJ, et al. Elevated expression of squamous cell carcinoma antigen (SCCA) is associated with human breast carcinoma. PLoS One. 2011;6:0019096.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant provided by Breast Cancer Research Center (BCRC), ACECR.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Majidzadeh-A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majidzadeh-A, K., Gharechahi, J. Plasma proteomics analysis of tamoxifen resistance in breast cancer. Med Oncol 30, 753 (2013). https://doi.org/10.1007/s12032-013-0753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0753-y

Keywords

Navigation