Skip to main content

Advertisement

Log in

EMT transcription factors: implication in osteosarcoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The primary malignant bone tumor, osteosarcoma, is a deadly disorder. Its etiology is complex, and treatment is mostly obscure. The transcription factors (TFs) involved in epithelial to mesenchymal transition (EMT) have significant role in osteosarcoma. A number of evidence suggests that overexpression of EMT-TFs, such as Twist, Snails and Zebs, is involved in complex pathogenesis of osteosarcoma. Recent research studies have showed some extent of promise in osteosarcoma treatment by targeting these EMT-TFs. However, success in research on osteosarcoma-EMT-TFs axis is just in primary stage, and a long way to go. Targeting Twist, Snail or Zeb by specific molecules or chemotherapeutic agents may provide a new dimension in osteosarcoma treatment by controlling metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

    Article  PubMed  Google Scholar 

  2. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115:1531–43.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fuchs B, Pritchard DJ. Etiology of osteosarcoma. Clin Orthop Relat Res. 2002;397:40–52.

    Article  PubMed  Google Scholar 

  4. Calvert GT, Randall RL, Jones KB, Cannon-Albright L, Lessnick S, Schiffman JD. At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma. 2012;2012:152382.

    PubMed Central  PubMed  Google Scholar 

  5. Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 2007;26:1–18.

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001;19:292–315.

    Article  CAS  PubMed  Google Scholar 

  7. Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, Ferguson WS, Gebhardt MC, Goorin AM, Harris M, Kleinerman E, Link MP, Nadel H, Nieder M, Siegal GP, Weiner MA, Wells RJ, Womer RB, Grier HE, Children’s Oncology Group. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633–8.

    Article  CAS  PubMed  Google Scholar 

  8. Harting MT, Blakely ML. Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg. 2006;15:25–9.

    Article  PubMed  Google Scholar 

  9. PosthumaDeBoer J, Witlox MA, Kaspers GJ, van Royen BJ. Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature. Clin Exp Metastasis. 2011;28:493–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Krishnan K, Khanna C, Helman LJ. The biology of metastases in pediatric sarcomas. Cancer J. 2005;11:306–13.

    Article  CAS  PubMed  Google Scholar 

  11. Kong D, Li Y, Wang Z, Sarkar FH. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel). 2011;3:716–29.

    Article  Google Scholar 

  12. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol. 2012;23:320–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Khan MA, Chen HC, Zhang D, Fu J. Twist: a molecular target in cancer therapeutics, Tumor Biol. 2013; Online published.

  15. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA. 2001;98:10356–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  18. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  PubMed  Google Scholar 

  19. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    Article  PubMed  Google Scholar 

  20. Yin K, Liao Q, He H, Zhong D. Prognostic value of Twist and E-cadherin in patients with osteosarcoma. Med Oncol. 2012;29:3449–55.

    Article  CAS  PubMed  Google Scholar 

  21. Horvai AE, Roy R, Borys D, O’Donnell RJ. Regulators of skeletal development: a cluster analysis of 206 bone tumors reveals diagnostically useful markers. Mod Pathol. 2012;25:1452–61.

    Article  CAS  PubMed  Google Scholar 

  22. Šošić D, Richardson JA, Yu K, Ornitz DM, Olson EN. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell. 2003;112:169–80.

    Article  PubMed  Google Scholar 

  23. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  PubMed  Google Scholar 

  24. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, Maestro R, Voeltzel T, Selmi A, Valsesia-Wittmann S, Caron de Fromentel C, Puisieux A. Induction of EMT by Twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14:79–89.

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Liao Q, He H, Zhong D, Yin K. TWIST interacts with β-catenin signaling on osteosarcoma cell survival against cisplatin. Mol Carcinog. 2012; Online published.

  26. Zhou Y, Zang X, Huang Z, Zhang C. TWIST interacts with endothelin-1/endothelin A receptor signaling in osteosarcoma cell survival against cisplatin. Oncol Lett. 2013;5:857–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Felx M, Guyot MC, Isler M, Turcotte RE, Doyon J, Khatib AM, Leclerc S, Moreau A, Moldovan F. Endothelin-1 (ET-1) promotes MMP-2 and MMP-9 induction involving the transcription factor NF-kappaB in human osteosarcoma. Clin Sci (Lond). 2006;110:645–54.

    Article  CAS  Google Scholar 

  28. Okamura H, Yoshida K, Haneji T. Negative regulation of TIMP1 is mediated by transcription factor TWIST1. Int J Oncol. 2009;35:181–6.

    CAS  PubMed  Google Scholar 

  29. Ishikawa T, Shimizu T, Ueki A, Yamaguchi SI, Onishi N, Sugihara E, Kuninaka S, Miyamoto T, Morioka H, Nakayama R, Kobayashi E, Toyama Y, Mabuchi Y, Matsuzaki Y, Yamaguchi R, Miyano S, Saya H. Twist2 functions as a tumor suppressor in murine osteosarcoma cells. Cancer Sci. 2013; Online published.

  30. Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene. 2000;257:1–12.

    Article  CAS  PubMed  Google Scholar 

  31. Ohkubo T, Ozawa M. The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. Cell Sci. 2004;117:1675–85.

    Article  CAS  Google Scholar 

  32. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.

    Article  CAS  PubMed  Google Scholar 

  33. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  34. Larriba MJ, Ordóñez-Morán P, Chicote I, Martín-Fernández G, Puig I, Muñoz A, Pálmer HG. Vitamin D receptor deficiency enhances Wnt/β-catenin signaling and tumor burden in colon cancer. PLoS One. 2011;6:e23524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Stubbins RE, Hakeem A, Núñez NP. Using components of the vitamin D pathway to prevent and treat colon cancer. Nutr Rev. 2012;70:721–9.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Yang H, Zhang Y, Zhou Z, Jiang X, Shen A. Snail-1 regulates VDR signaling and inhibits 1,25(OH)-D3 action in osteosarcoma. Eur J Pharmacol. 2011;670:341–6.

    Article  CAS  PubMed  Google Scholar 

  37. Alves CC, Carneiro F, Hoefler H, Becker KF. Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci. 2009;14:3035–50.

    Article  Google Scholar 

  38. Sharili AS, Allen S, Smith K, Hargreaves J, Price J, McGonnell I. Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy. Tumor Biol. 2011;32:515–26.

    Article  CAS  Google Scholar 

  39. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339:189–95.

    Article  CAS  PubMed  Google Scholar 

  40. Haydon RC, Luu HH, He TC. Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Clin Orthop Relat Res. 2007;454:237–46.

    Article  PubMed  Google Scholar 

  41. Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66:773–87.

    Article  CAS  PubMed  Google Scholar 

  42. Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012;69:2527–41.

    Article  CAS  PubMed  Google Scholar 

  43. Browne G, Sayan AE, Tulchinsky E. ZEB proteins link cell motility with cell cycle control and cell survival in cancer. Cell Cycle. 2010;9:886–91.

    Article  CAS  PubMed  Google Scholar 

  44. Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A, Postigo A. Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res. 2011;1:897–912.

    PubMed Central  PubMed  Google Scholar 

  45. Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T, Brabletz T. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 2006;131:830–40.

    Article  CAS  PubMed  Google Scholar 

  46. Sayan AE, Griffiths TR, Pal R, Browne GJ, Ruddick A, Yagci T, Edwards R, Mayer NJ, Qazi H, Goyal S, Fernandez S, Straatman K, Jones GD, Bowman KJ, Colquhoun A, Mellon JK, Kriajevska M, Tulchinsky E. SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc Natl Acad Sci USA. 2009;106:14884–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Huang Y, Yang Y, Gao R, Yang X, Yan X, Wang C, Jiang S, Yu L. RLIM interacts with Smurf2 and promotes TGF-β induced U2OS cell migration. Biochem Biophys Res Commun. 2011;414:181–5.

    Article  CAS  PubMed  Google Scholar 

  48. Shen A, Zhang Y, Yang H, Xu R, Huang G. Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma. J Surg Oncol. 2012;105:830–4.

    Article  CAS  PubMed  Google Scholar 

  49. Wensman H, Göransson H, Leuchowius KJ, Strömberg S, Pontén F, Isaksson A, Rutteman GR, Heldin NE, Pejler G, Hellmén E. Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas. Breast Cancer Res Treat. 2009;118:333–43.

    Article  CAS  PubMed  Google Scholar 

  50. Wensman H, Heldin NE, Pejler G, Hellmén E. Diverse bone morphogenetic protein expression profiles and smad pathway activation in different phenotypes of experimental canine mammary tumors. PLoS One. 2009;4:e7133.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Man TK, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J, Johnson M, Davino N, Murray J, Helman L, Meyer W, Triche T, Wong KK, Lau CC. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res. 2005;65:8142–50.

    Article  CAS  PubMed  Google Scholar 

  52. Xu G, Shen J, Yu A, Wang H, Man TK, Lau CC. Knockdown of TWIST1 increases chemosensitivity of osteosarcoma cells [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70: Abstract nr 3402.

  53. Møller HD, Ralfkjær U, Cremers N, Frankel M, Pedersen RT, Klingelhöfer J, Yanagisawa H, Grigorian M, Guldberg P, Sleeman J, Lukanidin E, Ambartsumian N. Role of fibulin-5 in metastatic organ colonization. Mol Cancer Res. 2011;9:553–63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the National 863 project of China (2011AA030101).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanghua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Yuan, J. & Li, K. EMT transcription factors: implication in osteosarcoma. Med Oncol 30, 697 (2013). https://doi.org/10.1007/s12032-013-0697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0697-2

Keywords

Navigation