Skip to main content

Advertisement

Log in

Overexpression of TFIIB-related factor 2 is significantly correlated with tumor angiogenesis and poor survival in patients with esophageal squamous cell cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Studies have shown that genetic activation of TFIIB-related factor 2 (BRF2) represents a unique mechanism of tumorigenesis through the increase in Pol III-mediated transcription. Several studies have shown that BRF2 is overexpressed in several types of cancer and suggest the oncogenic role of BRF2. This study aimed to examine the expression of TFIIB-related factor 2 (BRF2) in patients with esophageal squamous cell cancer (ESCC) and explore the relationship of BRF2 expression with clinicopathologic factors, tumor angiogenesis and prognosis. We found that increased BRF2 protein expression was prevalent in esophageal squamous cell cancer and was significantly associated with deeper tumor invasion (P = 0.039) and microvessel density (P = 0.007). Additionally, expression of BRF2 was found to be an independent prognostic factor in ESCC patients. Furthermore, a significant correlation between high BRF2 expression and shorter overall survival time was found in different subgroups of ESCC patients stratified by the clinical stage, T classification and lymph node metastasis. High expression of BRF2 protein is closely associated with tumor progression and angiogenesis and poor survival of ESCC. BRF2 is a promising biomarker to identify individuals with poor prognostic potential and concludes the possibility of its use as a prognostic marker in patients with ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–50.

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  3. Sano A, Kato H, Sakurai S, et al. CD24 expression is a novel prognostic factor in esophageal squamous cell carcinoma. Ann Surg Oncol. 2009;16:506–14.

    Article  PubMed  Google Scholar 

  4. Ren Y, Cao B, Law S, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res. 2005;11:6190–7.

    Article  PubMed  CAS  Google Scholar 

  5. Mariette C, Balon JM, Piessen G, et al. Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer. 2003;97:1616–23.

    Article  PubMed  Google Scholar 

  6. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101.

    Article  PubMed  CAS  Google Scholar 

  7. Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002;16(20):2593–620.

    Article  PubMed  CAS  Google Scholar 

  8. Cabarcas S, Schramm L. RNA polymerase III transcription in cancer: the BRF2 connection. Cabarcas and Schramm. Mol Cancer. 2011;10:47–62.

    Article  PubMed  CAS  Google Scholar 

  9. Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002;16(20):2593–620.

    Article  PubMed  CAS  Google Scholar 

  10. Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res. 2001;29(13):2675–90.

    Article  PubMed  CAS  Google Scholar 

  11. Geiduschek EP, Kassavetis GA. The RNA polymerase III transcription apparatus. J Mol Biol. 2001;310(1):1–26.

    Article  PubMed  CAS  Google Scholar 

  12. Cabarcas S, Jacob J, Veras I, Schramm L. Differential expression of the TFIIIB subunits Brf1 and Brf2 in cancer cells. BMC Mol Biol. 2008;9:74.

    Article  PubMed  Google Scholar 

  13. Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol Cell. 2007;26(3):367–79.

    Article  PubMed  CAS  Google Scholar 

  14. Reina JH, Azzouz TN, Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS ONE. 2006;1:e134.

    Article  PubMed  Google Scholar 

  15. Rollins J, Veras I, Cabarcas S, Willis I, Schramm L. Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int J Biol Sci. 2007;3(5):292–302.

    Article  PubMed  CAS  Google Scholar 

  16. Goodfellow SJ, Graham EL, Kantidakis T, Marshall L, Coppins BA, Oficjalska-Pham D, Gerard M, Lefebvre O, White RJ. Regulation of RNA polymerase III transcription by Maf1 in mammalian cells. J Mol Biol. 2008;378:481–91.

    Article  PubMed  CAS  Google Scholar 

  17. Jacob J, Cabarcas S, Veras I, Zaveri N, Schramm L. The green tea component EGCG inhibits RNA polymerase III transcription. Biochem Biophys Res Commun. 2007;360(4):778–83.

    Article  PubMed  CAS  Google Scholar 

  18. Geiduschek EP, Kassavetis GA. The RNA polymerase III transcription apparatus. J Mol Biol. 2001;310(1):1–26.

    Article  PubMed  CAS  Google Scholar 

  19. Lockwood William W, et al. Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. PLoS Med. 2010;98(6):456–70.

    Google Scholar 

  20. Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  21. Suárez Y, Fernández-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100(8):1164–73.

    Article  PubMed  Google Scholar 

  22. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108(9):3068–71.

    Article  PubMed  CAS  Google Scholar 

  23. Greene FL, Page DL, Fleming ID, et al. AJCC cancer staging manual. 6th ed. New York: Springer; 2002. p. 91–8.

    Google Scholar 

  24. Wang Jian-Hua, Chen Xiu-Ting, Wen Zhe-Sheng, et al. High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis. PLoS ONE. 2012;7(10):e45622.

    Article  PubMed  CAS  Google Scholar 

  25. Li SH, Wang Z, Liu XY. Metastasis-associated protein 1 (MTA1) overexpression is closely associated with shorter disease-free interval after complete resection of histologically node-negative esophageal cancer. World J Surg. 2009;33:1876–81.

    Article  PubMed  Google Scholar 

  26. Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer. 2002;38:1564–79.

    Article  PubMed  CAS  Google Scholar 

  27. Geiduschek EP, Kassavetis GA. The RNA polymerase III transcription apparatus. J Mol Biol. 2001;310(1):1–26.

    Article  PubMed  CAS  Google Scholar 

  28. Cabarcas S, Jacob J, Veras I, Schramm L. Differential expression of the TFIIIB subunits Brf1 and Brf2 in cancer cells. BMC Mol Biol. 2008;9:74.

    Article  PubMed  Google Scholar 

  29. Chesnokov I, Chu WM, Botchan MR, Schmid CW. p53 inhibits RNA polymerase III-directed transcription in a promoter dependent manner. Mol Cell Biol. 1996;16(12):7084–8.

    PubMed  CAS  Google Scholar 

  30. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9(2):166–80.

    Article  PubMed  CAS  Google Scholar 

  31. Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10:138–46.

    Article  PubMed  CAS  Google Scholar 

  32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Guangzhen Li (Department of General Surgery) for his data analysis from Qilu Hospital, Shandong University, China. This project was supported by the National Natural Science Foundation of China (No. 30571844), and the Science and Technology Development Foundation of Shandong Province (No. 2009GG10002007), and the National Natural Science Foundation of Shandong Province (No. ZR2009CM090). Sponsors had no involvement in the study design; in the collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Conflict of interest

All authors have read and approved this statement and have no financial and personal relationships with other people or organizations that could be inappropriate to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Tian, H., Yue, W. et al. Overexpression of TFIIB-related factor 2 is significantly correlated with tumor angiogenesis and poor survival in patients with esophageal squamous cell cancer. Med Oncol 30, 553 (2013). https://doi.org/10.1007/s12032-013-0553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0553-4

Keywords

Navigation