Skip to main content

Advertisement

Log in

miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Accumulating evidence has shown that microRNAs are involved in multiple processes in cancer development and progression. Recently, miR-22 has been identified as a tumor-suppressing microRNA in many human cancers. However, the specific function of miR-22 in gastric cancer is unclear at this point. In this study, we first measured miR-22 expression level in 30 pairs of gastric cancer and matched normal tissues, two normal and six gastric cancer cell lines by real-time quantitative RT-PCR. We found that the expression of miR-22 in gastric cancer tissues and cell lines was much lower than that in normal control, respectively. Transfection of miR-22 expression plasmid could significantly inhibit the cell migration and invasion in SGC-7901 and NCL-N87 gastric cancer cell lines. Moreover, we also showed that Sp1 was negatively regulated by miR-22 at the posttranscriptional level, via a specific target site within the 3′UTR by luciferase reporter assay. The expression of Sp1 was inversely correlated with miR-22 expression in gastric cancer tissues, and knockdown of Sp1 by siRNA inhibited cell malignant behaviors. Thus, our findings suggest that miR-22 acts as tumor suppressor by targeting the Sp1 gene and inhibiting gastric cancer cell migration and invasion. The findings of this study contribute to current understanding of the functions of miR-22 in gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.

    PubMed  Google Scholar 

  3. Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol. 2006;12:17–20.

    PubMed  Google Scholar 

  4. Hohenberger P, Gretschel S. Gastric cancer. Lancet. 2003;362:305–15.

    Article  PubMed  Google Scholar 

  5. Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71.

    Article  PubMed  CAS  Google Scholar 

  6. Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309:1519–24.

    Article  PubMed  CAS  Google Scholar 

  7. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.

    Article  PubMed  CAS  Google Scholar 

  8. Xiong J, Du Q, Liang Z. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene. 2010;29:4980–8.

    Article  PubMed  CAS  Google Scholar 

  9. Bar N, Dikstein R. miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS ONE. 2010;5:e10859.

    Article  PubMed  Google Scholar 

  10. Ting Y, Medina DJ, Strair RK, Schaar DG. Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun. 2010;394:606–11.

    Article  PubMed  CAS  Google Scholar 

  11. Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, et al. Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res. 2011;71:4628–39.

    Article  PubMed  CAS  Google Scholar 

  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  13. Liao CG, Kong LM, Song F, Xing JL, Wang LX, Sun ZJ, et al. Characterization of basigin isoforms and the inhibitory function of basigin-3 in human hepatocellular carcinoma proliferation and invasion. Mol Cell Biol. 2011;31:2591–604.

    Article  PubMed  CAS  Google Scholar 

  14. Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285:7986–94.

    Article  PubMed  CAS  Google Scholar 

  15. Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R, et al. Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene. 2011;30:1290–301.

    Article  PubMed  CAS  Google Scholar 

  16. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, et al. miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol. 2011;193:409–24.

    Article  PubMed  CAS  Google Scholar 

  17. Hasegawa K, Wakino S, Tanaka T, Kimoto M, Tatematsu S, Kanda T, et al. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1488–94.

    Article  PubMed  CAS  Google Scholar 

  18. Kong LM, Liao CG, Chen L, Yang HS, Zhang SH, Zhang Z, et al. Promoter hypomethylation up-regulates CD147 expression through increasing Sp1 binding and associates with poor prognosis in human hepatocellular carcinoma. J Cell Mol Med. 2011;15:1415–28.

    Article  PubMed  CAS  Google Scholar 

  19. Kong LM, Liao CG, Fei F, Guo X, Xing JL, Chen ZN. Transcription factor Sp1 regulates expression of cancer-associated molecule CD147 in human lung cancer. Cancer Sci. 2010;101:1463–70.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 2010;103:1215–20.

    Article  PubMed  CAS  Google Scholar 

  21. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  PubMed  CAS  Google Scholar 

  22. Wang F, Li Y, Zhou J, Xu J, Peng C, Ye F, et al. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 2011;179:2580–8.

    Article  PubMed  CAS  Google Scholar 

  23. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999;49(33–64):1.

    Google Scholar 

  24. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004;116:499–509.

    Article  PubMed  CAS  Google Scholar 

  25. Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, et al. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res. 2004;10:4109–17.

    Article  PubMed  CAS  Google Scholar 

  26. Yuan P, Wang L, Wei D, Zhang J, Jia Z, Li Q, et al. Therapeutic inhibition of Sp1 expression in growing tumors by mithramycin a correlates directly with potent antiangiogenic effects on human pancreatic cancer. Cancer. 2007;110:2682–90.

    Article  PubMed  CAS  Google Scholar 

  27. Oue N, Aung PP, Mitani Y, Kuniyasu H, Nakayama H, Yasui W. Genes involved in invasion and metastasis of gastric cancer identified by array-based hybridization and serial analysis of gene expression. Oncology. 2005;69(Suppl 1):17–22.

    Article  PubMed  CAS  Google Scholar 

  28. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  PubMed  CAS  Google Scholar 

  29. Klein CA. Cancer. The metastasis cascade. Science. 2008;321:1785–7.

    Article  PubMed  CAS  Google Scholar 

  30. Sreekumar R, Sayan BS, Mirnezami AH, Sayan AE. MicroRNA Control of Invasion and Metastasis Pathways. Front Genet. 2011;2:58.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by National Natural Science Foundation of China (81101614 and 81171995).

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Gong Liao.

Additional information

Mei-Mei Guo, Li-Hua Hu and Yong-Qiang Wang contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, MM., Hu, LH., Wang, YQ. et al. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med Oncol 30, 542 (2013). https://doi.org/10.1007/s12032-013-0542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0542-7

Keywords

Navigation