Skip to main content
Log in

Sox2 expression predicts poor survival of hepatocellular carcinoma patients and it promotes liver cancer cell invasion by activating Slug

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Sox2 is a major transcription factor essential to the stemness characteristics and is associated with various types of cancers. In this study, we investigated the expressions and functional roles of Sox2 in hepatocellular carcinoma (HCC). Our data show that high level of Sox2 expression correlates with metastasis and low survival rate in HCC. HCC cells overexpressing Sox2 are characterized by active epithelial-mesenchymal transition and exhibit increased ability of transwell invasion, soft agar colonization, and sphere formation. We also found Sox2 expression was correlated with the transcription activity of SLUG promoter region. These results present novel mechanistic insight into an important role of Sox2 in HCC and suggest a potential application of Sox2 in HCC prognosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem-like cell

EMT:

Epithelial-mesenchymal transition

ESC:

Embryonic stem cell

GFP:

Green fluorescent protein

HCC:

Hepatocellular carcinoma

LV:

Lentivirus

References

  1. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  PubMed  CAS  Google Scholar 

  2. Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS ONE. 2012;7(8):e41335.

    Article  PubMed  CAS  Google Scholar 

  3. Sanada Y, Yoshida K, Ohara M, Oeda M, Konishi K, Tsutani Y. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas. 2006;32(2):164–70.

    Article  PubMed  CAS  Google Scholar 

  4. Li XL, Eishi Y, Bai YQ, Sakai H, Akiyama Y, Tani M, et al. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol. 2004;24(2):257–63.

    PubMed  CAS  Google Scholar 

  5. Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, Rodriguez-Gil Y, Martinez MA, Hernandez L, et al. Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol. 2007;20(4):474–81.

    Article  PubMed  CAS  Google Scholar 

  6. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene. 2012;31(18):2270–82.

    Article  PubMed  CAS  Google Scholar 

  7. Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D, et al. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics. 2011;12:11.

    Article  PubMed  CAS  Google Scholar 

  8. Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS ONE. 2011;6(11):e26740.

    Article  PubMed  CAS  Google Scholar 

  9. Huang P, Qiu J, Li B, Hong J, Lu C, Wang L, et al. Role of Sox2 and Oct4 in predicting survival of hepatocellular carcinoma patients after hepatectomy. Clin Biochem. 2011;44(8–9):582–9.

    Article  PubMed  CAS  Google Scholar 

  10. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  11. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  PubMed  CAS  Google Scholar 

  12. Dang H, Ding W, Emerson D, Rountree CB. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics. BMC Cancer. 2011;11:396.

    Article  PubMed  CAS  Google Scholar 

  13. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15:1010–2.

    Article  PubMed  CAS  Google Scholar 

  14. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  PubMed  CAS  Google Scholar 

  15. Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle. 2009;8:843–52.

    Article  PubMed  CAS  Google Scholar 

  16. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

    Article  PubMed  CAS  Google Scholar 

  17. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69:2887–95.

    Article  PubMed  CAS  Google Scholar 

  18. Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al. Nanog regulates self-renewal of cancer stem cell through IGF pathway in human hepatocellular carcinoma. Hepatology. 2012;. doi:10.1002/hep.25745.

    Google Scholar 

  19. Li Y, Tian B, Yang J, Zhao L, Wu X, Ye SL, et al. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol. 2004;130(8):460–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sun HC, Zhang W, Qin LX, Zhang BH, Ye QH, Wang L, et al. Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol. 2007;47(5):684–90.

    Article  PubMed  CAS  Google Scholar 

  21. Yang XR, Xu Y, Shi GM, Fan J, Zhou J, Ji Y, et al. Cytokeratin 10 and cytokeratin 19: predictive markers for poor prognosis in hepatocellular carcinoma patients after curative resection. Clin Cancer Res. 2008;14(12):3850–9.

    Article  PubMed  CAS  Google Scholar 

  22. Wittekind C. Pitfalls in the classification of liver tumors. Pathologe. 2006;27(4):289–93.

    Article  PubMed  CAS  Google Scholar 

  23. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol. 2011;3(4):230–8.

    Article  PubMed  CAS  Google Scholar 

  24. Ding W, You H, Dang H, LeBlanc F, Galicia V, Lu SC, et al. Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology. 2010;52:945–53.

    Article  PubMed  CAS  Google Scholar 

  25. Fu J, Chen Y, Cao J, Luo T, Qian YW, Yang W, et al. p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1α pathways. Hepatology. 2011;53:181–92.

    Article  PubMed  CAS  Google Scholar 

  26. Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, et al. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 2011;54:1690–706.

    Article  PubMed  CAS  Google Scholar 

  27. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51:545–56.

    Article  PubMed  CAS  Google Scholar 

  28. Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50:1464–74.

    Article  PubMed  CAS  Google Scholar 

  29. Alves CC, Carneiro F, Hoefler H, Becker KF. Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci. 2009;14:3035–50.

    Article  PubMed  Google Scholar 

  30. Uchikado Y, Natsugoe S, Okumura H, Setoyama T, Matsumoto M, Ishigami S, et al. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11(3):1174–80.

    PubMed  CAS  Google Scholar 

  31. Camp ER, Findlay VJ, Vaena SG, Walsh J, Lewin DN, Turner DP, et al. Slug expression enhances tumor formation in a noninvasive rectal cancer model. J Surg Res. 2011;170(1):56–63.

    Article  PubMed  Google Scholar 

  32. Shih JY, Yang PC. The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 2011;32(9):1299–304.

    Article  PubMed  CAS  Google Scholar 

  33. Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun. 2009;383(2):157–62.

    Article  PubMed  CAS  Google Scholar 

  34. Lin T, Ding YQ, Li JM. Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol. 2012;29:878–85.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou X, Zhou YP, Huang GR, Gong BL, Yang B, Zhang DX, et al. Expression of the stem cell marker, Nanog, in human endometrial adenocarcinoma. Int J Gynecol Pathol. 2011;30:262–70.

    Article  PubMed  Google Scholar 

  36. Yasuda H, Tanaka K, Okita Y, Araki T, Saigusa S, Toiyama Y, et al. CD133, OCT4, and NANOG in ulcerative colitis-associated colorectal cancer. Oncol Lett. 2011;2(6):1065–71.

    PubMed  CAS  Google Scholar 

  37. Borrull A, Ghislin S, Deshayes F, Lauriol J, Alcaide-Loridan C, Middendorp S. Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J Cancer Res Clin Oncol. 2012;138(7):1145–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by China National Key Projects for Infectious Diseases (2012ZX10002-012 and 2012ZX10002-009), National Basic Research Program of China (973 Program: 2011CB910604), and Shanghai Natural Science Foundation (12ZR1405900).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinkun Liu.

Additional information

Chun Sun and Lu Sun: These authors contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Sun, L., Li, Y. et al. Sox2 expression predicts poor survival of hepatocellular carcinoma patients and it promotes liver cancer cell invasion by activating Slug. Med Oncol 30, 503 (2013). https://doi.org/10.1007/s12032-013-0503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0503-1

Keywords

Navigation