Skip to main content

Advertisement

Log in

Genetic single-nucleotide polymorphisms of inflammation-related factors associated with risk of lung cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

This study was to investigate the association of inflammation-related factors with the risk of lung cancer. All subjects were unrelated ethnic Han Chinese in Liaoning province. Our study conducted a hospital-based case–control study, the case group consisted of 193 histologically diagnosed lung cancer patients, and 211 controls were selected from cancer-free patients at the same. 5 single-nucleotide polymorphisms (TGFβ1 +869T/C, IL6 −634C/G, TGFβ1 −509C/T, IL1β −511C/T, and IL1α −899C/T) in inflammatory genes (IL1, IL6, TGF) were analyzed by Taqman real-time PCR method. All statistical analyses were performed with statistical product and service solutions v13.0. The genotype distribution frequency of IL6 −634C/G exists significant difference between case and control group. Individuals carrying −634GG and CG genotype had a higher risk of lung cancer. The risk allele was G in IL6 −634C/G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu X, Zhao H, Suk R, et al. Genetic susceptibility to tobacco-related cancer. Oncogene. 2004;23:6500–23.

    Article  PubMed  CAS  Google Scholar 

  2. Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–42.

    Article  PubMed  CAS  Google Scholar 

  3. Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7.

    Article  PubMed  CAS  Google Scholar 

  4. Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–22.

    Article  PubMed  CAS  Google Scholar 

  5. Wang Y, Broderick P, Webb E, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40:1407–9.

    Article  PubMed  CAS  Google Scholar 

  6. Minna JD. Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer. J Clin Invest. 2003;111:31–3.

    PubMed  CAS  Google Scholar 

  7. Lam DC, Girard L, Ramirez R, et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res. 2007;67:4638–47.

    Article  PubMed  CAS  Google Scholar 

  8. Ho YS, Chen CH, Wang YJ, et al. Tobacco-specific carcinogen 4-(methylnitro samino) -1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NfkappaB activation and cyclin D1 up- regulation. Toxicol Appl Pharmacol. 2005;205:133–48.

    Article  PubMed  CAS  Google Scholar 

  9. Seitz HK, et al. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem. 2006;387:349–60.

    Article  PubMed  CAS  Google Scholar 

  10. Balkwill F, Mantovani A, et al. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  PubMed  CAS  Google Scholar 

  11. Chen CC, Yang SY, Liu CJ, et al. Association of cytokine and DNA repair gene polymorphisms with hepatitis B-related hepatocellular carcinoma. Int J Epidemiol. 2005;34:1310–8.

    Article  PubMed  Google Scholar 

  12. Balkwill F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 2006;25:409–16.

    Article  PubMed  CAS  Google Scholar 

  13. Blanco D, Vicent S, Fraga MF, et al. Molecular analysis of a multistep 1ung cancer model induced by chronic inflammation reveals epigenetic regulation of pl6 and activation of the DNA damage response pathway. Neoplasia. 2007;9:840–52.

    Article  PubMed  CAS  Google Scholar 

  14. Martey CA, Pollock SJ, Turner CK, et al. Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol. 2004;287:L981–91.

    Article  PubMed  CAS  Google Scholar 

  15. Bernert H, Sekikawa K, Radcliffe RA, et al. Tnfa and II-10 deficiencies have contrasting effects on lung tumor susceptibility: gender-dependent modulation of IL-10 haploinsufficiency. Mol Carcinog. 2003;38:117–23.

    Article  PubMed  CAS  Google Scholar 

  16. Akira S, Taga T, Kishimoto T. Intereukin-6 in biology and medicine. Adv Immunol. 1993;54:l–78.

    Google Scholar 

  17. Lim W-Y, Chen Y, Mohamed Ali S, et al. Polymorphisms in inflammatory pathway genes, host factors and lung cancer risk in Chinese female never-smokers. Carcinogenesis. 2011;32:522–9.

    Article  PubMed  CAS  Google Scholar 

  18. Bao S, Yang W, Zhou S, et al. Relationship between single nuelcotide polytmorphisms in-174G/C and-634C/G promoter region of interleukin-6 and prostate cancer. J Huazhong Univ Sci Technolog Med Sci. 2008;28(6):693–6.

    Article  PubMed  CAS  Google Scholar 

  19. Zienolddiny S, Ryberg D, Maggini V, et al. Polymorphisms of the interleukin-1 beta gene are associated with increased risk of non-small cell lung cancer. Int J Cancer. 2004;109:353–6.

    Article  PubMed  CAS  Google Scholar 

  20. Akhurst RJ. TGF beta signaling in health and disease. Nat Genet. 2004;36:790–2.

    Article  PubMed  CAS  Google Scholar 

  21. Sun J, Lei Z, Liu RY, et al. A haplotype of TGFBR1 is predominantly found in non-small cell lung cancer patients displaying TGFBR1 allelic-specific expression. Oncol Rep. 2011;25:685–9.

    PubMed  CAS  Google Scholar 

  22. Su D, Ma S, Liu P, et al. Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer. 2007;56:281–8.

    Article  PubMed  Google Scholar 

  23. Angele S, Romestaing P, Moullan N, et al. ATM haplotypes and cellular response to DNA damage:association with breast cancer risk and clinical radiosensitivity. Cancer Res. 2003;63:8717–25.

    PubMed  CAS  Google Scholar 

  24. Zhang L, Yang M, Bi N, et al. ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys. 2010;77:1360–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The grant of scientific and technological breakthroughs project (Shenyang City, P. R. China, No. 1091149-9-00). The grant of science and technology project (Liaoning Province, P. R. China, No.2011225019).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Yu, H., Wang, H. et al. Genetic single-nucleotide polymorphisms of inflammation-related factors associated with risk of lung cancer. Med Oncol 30, 414 (2013). https://doi.org/10.1007/s12032-012-0414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0414-6

Keywords

Navigation