Skip to main content

Advertisement

Log in

Expression and clinical significance of microRNA-326 in human glioma miR-326 expression in glioma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

As a suppressor of Hedgehog signaling pathway, microRNA-326 (miR-326) has been demonstrated to control the development of cerebellar neuronal progenitor and tumor cells. More recently, it has been reported that miR-326 was down-regulated in glioblastoma tissues and might regulate the metabolic activity of glioma and glioma stem cells, suggesting the involvement of miR-326 in tumorigenesis and progression of gliomas. However, the role of miR-326 in human glioma has not been clearly understood. Therefore, the aim of this study was to investigate the clinical significance of miR-326 expression in human glioma. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to characterize the expression patterns of miR-326 in 108 glioma and 20 normal brain tissues. The associations of miR-326 expression with clinicopathological factors and prognosis of glioma patients were also statistically analyzed. The expression levels of miR-326 in glioma tissues were significantly lower than those in normal brain tissues (P < 0.001). Additionally, the decreased miR-326 expression in glioma was significantly associated with advanced pathological grade (P = 0.01) and low Karnofsky performance score (KPS, P = 0.03). Moreover, Kaplan–Meier survival and Cox regression analyses showed that low expression of miR-326 (P = 0.01) and advanced pathological grade (P = 0.02) were independent factors predicting poor prognosis for gliomas. Furthermore, subgroup analyses showed that miR-326 expression was significantly associated with poor overall survival in glioma patients with high pathological grades (for grade III–IV: P < 0.001). Down-regulation of miR-326 may have potential value for predicting clinical outcomes in glioma patients with high pathological grades, suggesting that miR-326 is an important candidate tumor suppressor, and its down-regulated expression may contribute to glioma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rousseau A, Mokhtari K, Duyckaerts C. The 2007 WHO classification of tumors of the central nervous system-what has changed? Curr Opin Neurol. 2008;21:720–7.

    Article  PubMed  Google Scholar 

  2. Brandes AA. State-of-the-art treatment of high-grade brain tumors. Semin Oncol. 2003;30:4–9.

    Article  PubMed  Google Scholar 

  3. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108.

    Article  PubMed  Google Scholar 

  4. Hutterer M, Knyazev P, Abate A, et al. Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:130–8.

    Article  CAS  PubMed  Google Scholar 

  5. Visone R, Croce CM. MiRNAs and cancer. Am J Pathol. 2009;174:1131–8.

    Article  CAS  PubMed  Google Scholar 

  6. Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma cells. Cancer Res. 2010;70:8259–63.

    Article  CAS  PubMed  Google Scholar 

  7. Chan XH, Nama S, Gopal F, et al. Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas. Cell Rep. 2012 (in press).

  8. Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68:8164–72.

    Article  CAS  PubMed  Google Scholar 

  9. Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68:9125–30.

    Article  CAS  PubMed  Google Scholar 

  10. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125:1407–13.

    Article  CAS  PubMed  Google Scholar 

  11. Guan Y, Mizoguchi M, Yoshimoto K, et al. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res. 2010;16:4289–97.

    Article  CAS  PubMed  Google Scholar 

  12. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  Google Scholar 

  13. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev. 2011;27:862–6.

    Article  CAS  PubMed  Google Scholar 

  14. Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79:817–24.

    Article  CAS  PubMed  Google Scholar 

  15. Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 2008;27:2616–27.

    Article  CAS  PubMed  Google Scholar 

  16. Kefas B, Comeau L, Floyd DH, et al. The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci. 2009;29:15161–8.

    Article  CAS  PubMed  Google Scholar 

  17. Tang YF, Zhang Y, Li XY, Li C, Tian W, Liu L. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS. 2009;13:331–6.

    Article  CAS  PubMed  Google Scholar 

  18. Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10:1252–9.

    Article  CAS  PubMed  Google Scholar 

  19. Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS ONE. 2011;6:e24604.

    Article  CAS  PubMed  Google Scholar 

  20. Karsy M, Arslan E, Moy F. Current progress on understanding MicroRNAs in glioblastoma multiforme. Genes Cancer. 2012;3:3–15.

    Article  PubMed  Google Scholar 

  21. Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010;12:1102–12.

    Article  CAS  PubMed  Google Scholar 

  22. Wibrand K, Pai B, Siripornmongcolchai T, et al. MicroRNA regulation of the synaptic plasticity-related gene arc. PLoS ONE. 2012;7:e41688.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Lu, S., Geng, S. et al. Expression and clinical significance of microRNA-326 in human glioma miR-326 expression in glioma. Med Oncol 30, 373 (2013). https://doi.org/10.1007/s12032-012-0373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0373-y

Keywords

Navigation