Skip to main content
Log in

Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The soluble forms of Fas and its ligand (sFas and sFasL) correlate with disease progression in various malignancies. We compared serum levels of sFas and sFasL in children with acute lymphoblastic leukemia and healthy children to determine the prognostic significance of these molecules. Serum levels of sFas and sFasL were measured with an enzyme-linked immunosorbent assay in 48 patients with newly diagnosed childhood acute lymphoblastic leukemia and 38 healthy children. Cut-off values of sFas and sFasL levels were based on their levels in controls. Clinical and laboratory characteristics were recorded on admission. The mean serum concentration of sFas was 243 ± 40 pg/mL in patients and 238 ± 29 pg/mL in controls. Serum levels of sFasL were 4.33 ± 0.25 ng/mL in patients and 4.27 ± 0.11 ng/mL in controls. Neither difference was significant. Based on the cut-off value, 12.5% of the patients were positive for sFas, and 16.6% were positive for sFasL. Survival was significantly longer in sFasL-positive patients (394 ± 69.6 vs. 254 ± 24.3 days) and the duration of complete remission was also longer (380 ± 65.0 vs. 246 ± 26.0 days) than in sFasL-negative patients (P < 0.02), indicating the important role of this molecule in the response to therapy. Higher sFas levels were associated with hepatosplenomegaly (P < 0.047). In conclusion, sFasL positivity was associated with a favorable outcome in ALL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Onciu M. Acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:655–74.

    Article  PubMed  Google Scholar 

  2. Ribera JM, Oriol A. Acute lymphoblastic leukemia in adolescents and young adults. Hematol Oncol Clin North Am. 2009;23:1033–42.

    Article  PubMed  Google Scholar 

  3. Whitlock JA, Gaynon PS. Acute lymphoblastic leukemia in children. In: Greer JP, Foerster J, Lukens JN, editors. Wintrobe’s Clinical Hematology, 11th ed. 11th ed. Philadelphia: Lippincott Williams & Wilkins, Lippincott; 2003. p. 4298–354.

    Google Scholar 

  4. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    Article  PubMed  CAS  Google Scholar 

  5. Pieters R. Acute lymphoblastic leukemia in children and adolescents: chance of cure now higher than 80%. Ned Tijdschr Geneeskd. 2010;154:A1577.

    PubMed  Google Scholar 

  6. Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150:389–405.

    PubMed  Google Scholar 

  7. Iannolo G, Conticello C, Memeo L, et al. Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol. 2008;66:42–51.

    Article  PubMed  Google Scholar 

  8. Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther. 2001;92:57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Guicciardi ME, Gores GJ. Life and death by death receptors. Faseb J. 2009;23:1625–37.

    Article  PubMed  CAS  Google Scholar 

  10. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;11:265–7.

    Article  Google Scholar 

  11. Peter ME, Krammer PH. The CD95 (APO–1/Fas) disc and beyond. Cell Death Differ. 2003;10:26–35.

    Article  PubMed  CAS  Google Scholar 

  12. Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7:532–42.

    Article  PubMed  CAS  Google Scholar 

  13. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2002;21:485–95.

    Article  Google Scholar 

  14. Igney FH, Krammer PH. Death and anti–death, tumor resistance to apoptosis. Nature Rev Cancer. 2002;2:277–88.

    Article  CAS  Google Scholar 

  15. Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol. 2002;12:309–15.

    Article  PubMed  CAS  Google Scholar 

  16. Yang J, Epling-Burnette PK, Painter JS, et al. Antigen activation and impaired Fas–induced death–inducing signaling complex formation in T–large–granular lymphocyte leukemia. Blood. 2008;111:1610–6.

    Article  PubMed  CAS  Google Scholar 

  17. Yolcu ES, Ash S, Kaminitz A, Sagiv Y, Askenasy N, Yarkoni S. Apoptosis as a mechanism of T–regulatory cell homeostasis and suppression apoptosis in T–regulatory cell homeostasis. Immunol Cell Biol. 2008;86:650–8.

    Article  PubMed  CAS  Google Scholar 

  18. Urbaniank KD, Jazwies B, Tomaszewska TB, et al. Expression of Fas receptor and sFasL concentration in acute leukemia. Pol Arch Wewn. 2002;108:873–8.

    Google Scholar 

  19. Liu X, Qi Z, Luo L, Zhang X (1999) Measurement of soluble Fas in patients with hematological malignancy. Hunan Yi Ke Da Xue Xue Bao 24:171–173, 176.

    Google Scholar 

  20. Kapplan EL, Meier P. Non-parametric estimation from incomplete observations. J Am Statist Assoc. 1958;53:457–81.

    Article  Google Scholar 

  21. Schimmer AD. Apoptosis in leukemia: from molecular pathways to targeted therapies. Best Pract Res Clin Haematol. 2008;21:5–11.

    Article  PubMed  CAS  Google Scholar 

  22. Jattela M. Multiple cell death pathways are regulators of tumor initiation and progression. Oncogene. 2004;23:2746–56.

    Article  Google Scholar 

  23. Krueger A, Fas SC, Baumann S, et al. The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol Rev. 2003;193:58–69.

    Article  PubMed  CAS  Google Scholar 

  24. Amirghofran Z, Bahmani M, Azadmehr A, et al. Anticancer effects of various Iranian native medicinal plants on human tumor cell lines. Neoplasma. 2006;53:428–33.

    PubMed  CAS  Google Scholar 

  25. Amirghofran Z, Daneshbod Y, Gholijani N. Bcl–2 in combination to myeloid antigen expression in adult acute lymphoblastic leukemia and prognostic outcome. Oncol Res. 2009;17:447–54.

    Article  PubMed  Google Scholar 

  26. Li-Weber M, Krammer PH. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol. 2003;15:145–57.

    Article  PubMed  CAS  Google Scholar 

  27. Barnhart BC, Legembre P, Pietras E, et al. CD95 ligand induces motility and invasiveness of apoptosis–resistant tumor cells. EMBO J. 2004;23:3175–85.

    Article  PubMed  CAS  Google Scholar 

  28. Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapy resistance. Oncogene. 2004;23:2934–49.

    Article  PubMed  CAS  Google Scholar 

  29. Mata JF, Silveira VS, Mateo EC, et al. Low mRNA expression of the apoptosis–related genes CASP3, CASP8, and Fas is associated with low induction treatment response in childhood acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer. 2010;55:100–7.

    PubMed  Google Scholar 

  30. Li Q, Tsuruda K, Sugahara KN, et al. Qualitative and quantitative characterization of Fas (CD95) expression and its role in primary human acute leukemia cells. Leuk Res. 2000;24:437–44.

    Article  PubMed  CAS  Google Scholar 

  31. Vries EG, Timmer T, Mulder NH, et al. Modulation of death receptor pathways in oncology. Drugs Today (Barc). 2003;39(Suppl):95–109.

    Google Scholar 

  32. Wuchter C, Karawajew L, Ruppert V, et al. Constitutive expression levels of CD95 and Bcl–2 as well as CD95 function and spontaneous apoptosis in vitro do not predict the response to induction chemotherapy and relapse rate in childhood acute lymphoblastic leukemia. Br J Hematol. 2000;110:154–60.

    Article  CAS  Google Scholar 

  33. Min YH, Lee S, Lee JW, et al. Expression of Fas antigen in acute myeloid leukemia is associated with therapeutic response to chemotherapy. Br J Hematol. 1996;93:928–30.

    Article  CAS  Google Scholar 

  34. Hentschel N, Krusch M, Kiener PA, et al. Serum levels of sCD137 (4–1BB) ligand are prognostic factors for progression in acute myeloid leukemia but not in non-Hodgkin’s lymphoma. Eur J Haematol. 2006;77:91–101.

    Article  PubMed  CAS  Google Scholar 

  35. Igney FH, Behrens CK, Krammer PH. CD95L mediates tumor counterattack in vitro but induces neutrophil-independent tumor rejection in vivo. Int J Cancer. 2005;113:78–87.

    Article  PubMed  CAS  Google Scholar 

  36. Hohlbaum AM, Moe S, Marshak-Rothstein A. Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med. 2000;191:1209–20.

    Article  PubMed  CAS  Google Scholar 

  37. Suda T, Hashimoto H, Tanaka M, et al. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med. 1997;186:2045–50.

    Article  PubMed  CAS  Google Scholar 

  38. Pearl-Yafe M, Yolcu ES, Yaniv I, et al. The dual role of Fas-ligand as an injury effector and defense strategy in diabetes and islet transplantation. Bioessays. 2006;28:211–22.

    Article  PubMed  CAS  Google Scholar 

  39. Abbasova SG, Vysotskii MM, Ovchinnikova LK. Cancer and soluble Fas. Bull Exp Biol Med. 2009;148:638–42.

    Article  PubMed  CAS  Google Scholar 

  40. Osorio LM, Aguilar-Santelises M, De Santiago A, et al. Increased serum levels of soluble Fas in progressive B-CLL. Eur J Haematol. 2001;66:342–6.

    Article  PubMed  CAS  Google Scholar 

  41. Ebeid EN, Khairy A, Amin M, et al. Soluble CD95 (APO–1/Fas) level in infancy and childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(suppl):8540.

    Google Scholar 

  42. Hazar V, Berber Z, Pestereli E, et al. Clinical importance of circulating and cellular expression levels of Fas and Fas ligand in pediatric patients with lymphoproliferative malignancies. Pediatr Hematol Oncol. 2005;22:247–56.

    Article  PubMed  CAS  Google Scholar 

  43. Courtney PA, Crockard AD, Williamson K, et al. Lymphocyte apoptosis in systemic lupus erythematosus: relationships with Fas expression, serum soluble Fas and disease activity. Lupus. 1999;8:508–13.

    Article  PubMed  CAS  Google Scholar 

  44. Herrmann M, Voll RE, Zoller OM, et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 1998;41:1241–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. 4724 from Shiraz University of Medical Sciences. We thank Saied Malek Hoseini and the head nurses of the pediatric oncology ward of Amir Hospital in Shiraz for help with liaising with the patients, K. Shashok (AuthorAID in the Eastern Mediterranean) for improving the use of English in the manuscript, and M. Gholami at the Center for Development of Clinical Research of Nemazee Hospital for research assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Amirghofran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, M., Amirghofran, Z. & Shahriari, M. Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia. Med Oncol 29, 2046–2052 (2012). https://doi.org/10.1007/s12032-011-9965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-9965-1

Keywords

Navigation