Skip to main content

Advertisement

Log in

MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Survivin has been shown to be an ideal target for cancer gene therapy because of its strong antiapoptotic effect. MicroRNA-34a (miR-34a) can function as a tumor suppressor in some cancers through negative regulation of gene expression. However, the relationship between miR-34a and survivin in larynx squamous cell carcinoma (LSCC) has not been explored. The abundance of survivin mRNA and miR-34a in LSCC tissues were measured using quantitative real-time polymerase chain reaction. Their expression levels were analyzed and correlated with tumor differentiation, lymphatic metastasis, clinical stages, and survival rates. MiR-34a mimic was transfected using liposomes to increase its level in LSCC cancer cell line, Hep-2. The effects of miR-34a on survivin protein expression were tested using western blot analysis. Cell cycle analyses were performed using flow cytometry. The results showed that transfection of miR-34a mimic significantly suppressed cell proliferation with decreased survivin protein expression, but did not affect mRNA expression level. The results from LSCC tissue samples showed that miR-34a was downregulated, while survivin expression was upregulated. The miR-34a levels were negatively correlated with histologic differentiation and were positively correlated with survival rate. MiR-34a significantly suppressed cell proliferation by arresting cells at G0/G1 phase in Hep-2 cells. These results indicated that miR-34a may affect the occurrence of LSCC by targeting survivin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Micozkadioğlu D, Unal M, Pata YS, Baştürk M, Cinel L. Prognostic value of expression of p53, proliferating cell nuclear antigen, and c-erbB-2 in laryngeal carcinoma. Med Sci Monit 2008;14:CR299–304.

    Google Scholar 

  2. Wang W, et al. Vasculogenic mimicry contributes to lymph node metastasis of laryngeal squamous cell carcinoma. J Exp Clin Cancer Res. 2010;29:60.

    Article  PubMed  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  4. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.

    Article  PubMed  CAS  Google Scholar 

  5. Ruby JG, Jan CH, Bartel DP. Intronic microRNA pre-cursors that bypass Drosha processing. Nature. 2007;448:83–6.

    Article  PubMed  CAS  Google Scholar 

  6. Lim LP, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–73.

    Article  PubMed  CAS  Google Scholar 

  7. Hornstein E, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature. 2005;438:671–4.

    Article  PubMed  CAS  Google Scholar 

  8. Deng Y, et al. MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci. 2011;7:133–7.

    Article  PubMed  CAS  Google Scholar 

  9. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  PubMed  CAS  Google Scholar 

  10. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  PubMed  CAS  Google Scholar 

  11. Giraldez AJ, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.

    Article  PubMed  CAS  Google Scholar 

  12. Guo J, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.

    Article  PubMed  CAS  Google Scholar 

  13. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  PubMed  CAS  Google Scholar 

  14. Gaur A, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.

    Article  PubMed  CAS  Google Scholar 

  15. Sah NK, Khan Z, Khan GJ, Bisen PS. Structural, functional and therapeutic biology of Survivin. Cancer Lett. 2006;244:164–71.

    Article  PubMed  CAS  Google Scholar 

  16. Aspe JR, Wall NR. Survivin-T34A: molecular mechanism and therapeutic potential. Onco Targets Ther. 2010;3:247–54.

    PubMed  CAS  Google Scholar 

  17. Shen W, Wang CY, Wang XH, Fu ZX. Oncolytic adenovirus mediated Survivin knockdown by RNA interference suppresses human colorectal carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res. 2009;28:81.

    Article  PubMed  Google Scholar 

  18. Raver-Shapira N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43.

    Article  PubMed  CAS  Google Scholar 

  19. Gou D, Zhang H, Baviskar PS, Liu L. Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol Genomics. 2007;31:554–62.

    Article  PubMed  CAS  Google Scholar 

  20. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18:1650–6.

    Article  PubMed  CAS  Google Scholar 

  21. Xiao B, et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta. 2009;400:97–102.

    Article  PubMed  CAS  Google Scholar 

  22. Coburn GA, Cullen BR. siRNAs: a new wave of RNA-based therapeutics. J Antimicrob Chemother. 2003;51:753–6.

    Article  PubMed  CAS  Google Scholar 

  23. Lu J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  PubMed  CAS  Google Scholar 

  24. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  PubMed  CAS  Google Scholar 

  25. Kefas B, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.

    Article  PubMed  CAS  Google Scholar 

  26. Hermeking H. p53 enters the microRNA world. Cancer Cell. 2007;12:414–8.

    Article  PubMed  CAS  Google Scholar 

  27. He X, He L, Hannon GJ. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67:11099–101.

    Article  PubMed  CAS  Google Scholar 

  28. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17:193–9.

    Article  PubMed  CAS  Google Scholar 

  29. Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55.

    Article  PubMed  CAS  Google Scholar 

  30. Tivnan A, et al. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer. 2011;11:33.

    Article  PubMed  CAS  Google Scholar 

  31. Lee J, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285:12604–11.

    Article  PubMed  CAS  Google Scholar 

  32. Corney DC, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16:1119–28.

    Article  PubMed  CAS  Google Scholar 

  33. Asslaber D, et al. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood. 2010;115:4191–7.

    Article  PubMed  CAS  Google Scholar 

  34. Lu B, et al. Survivin as a therapeutic target for radiation sensitization in lung cancer. Cancer Res. 2004;64:2840–5.

    Article  PubMed  CAS  Google Scholar 

  35. Kawasaki H, et al. Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer. 2001;91:2026–32.

    Article  PubMed  CAS  Google Scholar 

  36. Fan LF, Dong WG, Jiang CQ, Qian Q, Yu QF. Role of Hypoxiainducible factor-1 alpha and survivin in colorectal carcinoma progression. Int J Colorectal Dis. 2008;23:1057–64.

    Article  PubMed  Google Scholar 

  37. Nassar A, Sexton D, Cotsonis G, Cohen C. Survivin expression in breast carcinoma: correlation with apoptosis and prognosis. Appl Immunohistochem Mol Morphol. 2008;16:221–6.

    Article  PubMed  CAS  Google Scholar 

  38. Liu L, Zhang M, Zou P. Expression of PLK1 and survivin in diffuse large B-cell lymphoma. Leuk Lymphoma. 2007;48:2179–83.

    Article  PubMed  CAS  Google Scholar 

  39. Gallardo E, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung. Carcinogenesis. 2009;30(11):1903–9.

    Article  PubMed  CAS  Google Scholar 

  40. Lee JH, et al. MicroRNA expression and clinical outcome of small cell lung cancer. PLoS One. 2011;6(6):e21300.

    Article  PubMed  CAS  Google Scholar 

  41. Li N, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275:44–53.

    Article  PubMed  CAS  Google Scholar 

  42. Chen Z, et al. Enhancement of survivin gene downregulation and cell apoptosis by a novel combination: liposome microbubbles and ultrasound exposure. Med Oncol. 2009;26:491–500.

    Article  PubMed  CAS  Google Scholar 

  43. Takeuchi H, Morton DL, Elashoff D, Hoon DS. Survivin expression by metastatic melanoma predicts poor disease outcome in patients receiving adjuvant polyvalent vaccine. Int J Cancer. 2005;117:1032–8.

    Article  PubMed  CAS  Google Scholar 

  44. Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol. 2008;20:183–9.

    Article  PubMed  CAS  Google Scholar 

  45. Kaller M, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 2011;10:M111.010462.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ningbo Social Developmental Key Research Project (2008C50019) and the K.C. Wong Magna Fund in Ningbo University.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhisen Shen or Junming Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Z., Zhan, G., Ye, D. et al. MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med Oncol 29, 2473–2480 (2012). https://doi.org/10.1007/s12032-011-0156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0156-x

Keywords

Navigation