Skip to main content
Log in

CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma

  • Original paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cell death–inducing DFF45-like effector-3 (CIDE-3) is a novel member of an apoptosis-inducing protein family, but its function is unknown. CIDE-3 shows a different distribution pattern in hepatocellular carcinoma (HCC) tissues and normal adjacent tissues. Therefore, this work tested the hypothesis that CIDE-3 induces apoptosis in HCC cells, inhibiting oncogenesis and tumor development. We used immunohistochemistry to evaluate the expression of CIDE-3 in 82 HCC samples and 51 adjacent liver tissues. Overexpression of CIDE-3 induced apoptosis, as detected by flow cytometry, in the HCC cell line SMMC-7721, which had undetectable levels of CIDE-3 in the absence of CIDE-3 overexpression. A yeast two-hybrid system was employed to screen for proteins that interact with CIDE-3. The expression of CIDE-3 was decreased in HCC tissue, compared to adjacent normal tissues, and CIDE-3 expression and HCC differentiation were positively correlated. CIDE-3 expression levels were lower in poorly differentiated HCC tissue than in well-differentiated HCC tissue. Overexpressed CIDE-3 inhibited proliferation and induced apoptosis in HCC cells. We found that lipopolysaccharide-induced tumor necrosis factor (LITAF) interacted with CIDE-3 in hepatic cells. This is the first demonstrated interaction between CIDE-3 and LITAF, and the first report that CIDE-3 induces apoptosis in hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CIDE-3:

Cell death–inducing DFF45-like effector-3

LITAF:

Lipopolysaccharide-induced tumor necrosis factor

HCC:

Hepatocellular carcinoma

DFF:

DNA fragmentation factor

CAD:

Caspase-activated DNase

PBS:

Phosphate-buffered saline

DAB:

Diaminobenzidine

PVDF:

Polyvinylidene difluoride

TBS:

Tris-buffered saline

ORF:

Open reading frame

LPS:

Lipopolysaccharide

NO:

Nitric oxide

FISH:

Fluorescence in situ hybridization

References

  1. Bruix J, Hessheimer AJ, Forner A, Boix L, Vilana R, et al. New aspects of diagnosis and therapy of hepatocellular carcinoma. Oncogene. 2006;25:3848–56.

    Article  PubMed  CAS  Google Scholar 

  2. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation. 2004;28:311–8.

    Article  PubMed  Google Scholar 

  4. Fabregat I, Roncero C, Fernandez M. Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int. 2007;27:155–62.

    Article  PubMed  CAS  Google Scholar 

  5. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347–54.

    Article  PubMed  CAS  Google Scholar 

  6. Perez EA, Moreno-Aspitia A, Aubrey Thompson E, Andorfer CA. Adjuvant therapy of triple negative breast cancer. Breast Cancer Res Treat. 2010;120:285–91.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(Pt 1):1–16.

    PubMed  CAS  Google Scholar 

  8. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    Article  PubMed  CAS  Google Scholar 

  9. Liang L, Zhao M, Xu Z, Yokoyama KK, Li T. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J. 2003;370:195–203.

    Article  PubMed  CAS  Google Scholar 

  10. Inohara N, Nunez G. Genes with homology to DFF/CIDEs found in Drosophila melanogaster. Cell Death Differ. 1999;6:823–4.

    Article  PubMed  CAS  Google Scholar 

  11. Inohara N, Koseki T, Chen S, Wu X, Nunez G. CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J. 1998;17:2526–33.

    Article  PubMed  CAS  Google Scholar 

  12. Danesch U, Hoeck W, Ringold GM. Cloning and transcriptional regulation of a novel adipocyte-specific gene, FSP27. CAAT-enhancer-binding protein (C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression. J Biol Chem. 1992;267:7185–93.

    PubMed  CAS  Google Scholar 

  13. Gong J, Sun Z, Li P. CIDE proteins and metabolic disorders. Curr Opin Lipidol. 2009;20:121–6.

    Article  PubMed  CAS  Google Scholar 

  14. Stanley R, Hamilton LAA. World Health Organization classification of tumours: pathology and genetics of tumours of the digestive system. Lyon, France: IARC Press; 2000.

    Google Scholar 

  15. Yao L, Li Q, Li P, Zhang J, Ye J, et al. [Construction of the prokaryotic expression vector and expression of human CIDE-3 gene]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2006; 22:202–204.

    Google Scholar 

  16. Maitra A, Wistuba II, Washington C, Virmani AK, Ashfaq R, et al. High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol. 2001;159:119–30.

    Article  PubMed  CAS  Google Scholar 

  17. Nagao K, Yamaguchi S, Matsuyama H, Korenaga Y, Hirata H, et al. Allelic loss of 3p25 associated with alterations of 5q22.3 approximately q23.2 may affect the prognosis of conventional renal cell carcinoma. Cancer Genet Cytogenet. 2005;160:43–8.

    Article  PubMed  CAS  Google Scholar 

  18. Goto T, Phuoc NB, Nakano M, Ehara H, Yamamoto N, et al. Utility of Bcl-2, P53, Ki-67, and Caveolin-1 immunostaining in the prediction of biochemical failure after radical prostatectomy in a Japanese population. Urology. 2008;72:167–71.

    Article  PubMed  Google Scholar 

  19. Magnusson B, Gummesson A, Glad CA, Goedecke JH, Jernas M, et al. Cell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism. Metabolism. 2008;57:1307–13.

    Article  PubMed  CAS  Google Scholar 

  20. Chen Z, Guo K, Toh SY, Zhou Z, Li P. Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis. J Biol Chem. 2000;275:22619–22.

    Article  PubMed  CAS  Google Scholar 

  21. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A. 2008;105:7833–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wang JM, Li BC, Chen L, Wang GB, Sun H, et al. Cell death-inducing DFF45-like effector may take part in neuronal apoptosis of the lumbar spinal cord after sciatic nerve injury caused by a firearm. Mil Med. 2006;171:793–9.

    PubMed  Google Scholar 

  23. Chan SC, Lin SC, Li P. Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway. Biochem J. 2007;408:259–66.

    Article  PubMed  CAS  Google Scholar 

  24. Stiewe T. The p53 family in differentiation and tumorigenesis. Nat Rev Cancer. 2007;7:165–8.

    Article  PubMed  CAS  Google Scholar 

  25. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–5.

    Article  PubMed  CAS  Google Scholar 

  26. Myokai F, Takashiba S, Lebo R, Amar S. A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci U S A. 1999;96:4518–23.

    Article  PubMed  CAS  Google Scholar 

  27. Baek JY, Hur W, Wang JS, Bae SH, Yoon SK. Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest. World J Gastroenterol. 2007;13:1175–81.

    PubMed  CAS  Google Scholar 

  28. Matsumura Y, Matsumura Y, Nishigori C, Horio T, Miyachi Y. PIG7/LITAF gene mutation and overexpression of its gene product in extramammary Paget’s disease. Int J Cancer. 2004;111:218–23.

    Article  PubMed  CAS  Google Scholar 

  29. Li D, Da L, Tang H, Li T, Zhao M. CpG methylation plays a vital role in determining tissue- and cell-specific expression of the human cell-death-inducing DFF45-like effector A gene through the regulation of Sp1/Sp3 binding. Nucleic Acids Res. 2008;36:330–41.

    Article  PubMed  CAS  Google Scholar 

  30. Leist M, Gantner F, Bohlinger I, Tiegs G, Germann PG, et al. Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol. 1995;146:1220–34.

    PubMed  CAS  Google Scholar 

  31. Kakumu S, Okumura A, Ishikawa T, Yano M, Enomoto A, et al. Serum levels of IL-10, IL-15 and soluble tumour necrosis factor-alpha (TNF-alpha) receptors in type C chronic liver disease. Clin Exp Immunol. 1997;109:458–63.

    Article  PubMed  CAS  Google Scholar 

  32. Mottolese M, Nadasi EA, Botti C, Cianciulli AM, Merola R, et al. Phenotypic changes of p53, HER2, and FAS system in multiple normal tissues surrounding breast cancer. J Cell Physiol. 2005;204:106–12.

    Article  PubMed  CAS  Google Scholar 

  33. Shiraki K, Yamanaka T, Inoue H, Kawakita T, Enokimura N, et al. Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int J Oncol. 2005;26:1273–81.

    PubMed  CAS  Google Scholar 

  34. Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, et al. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology. 2006;43:362–72.

    Article  PubMed  CAS  Google Scholar 

  35. Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene. 2006;25:3823–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Additional information

Jie Min, Wei Zhang and Yu Gu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, J., Zhang, W., Gu, Y. et al. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma. Med Oncol 28 (Suppl 1), 219–227 (2011). https://doi.org/10.1007/s12032-010-9702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9702-1

Keywords

Navigation