Skip to main content

Advertisement

Log in

Identification of human gastric carcinoma biomarkers by differential protein expression analysis using 18O labeling and NanoLC-MS/MS coupled with laser capture microdissection

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Early detection and rational therapy for gastric cancer are crucial. In this study we undertook comparative proteomics for identification of gastric carcinoma biomarkers using pooled laser capture microdissected GA cells and matched nonmalignant gastric mucosa epithelial cells. The method involved separation of total proteins by 1D SDS-PAGE, trypsin digestion, and postdigest 18O/16O labeling followed by nano-HPLC-MS/MS for peptide identification and relative quantification. A total of 78 differentially expressed proteins were identified, among these proteins, 42 proteins were up-regulated in GA and 36 proteins were down-regulated. Some differentially expressed proteins were further validated by western blot analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GA:

Gastric adenocarcinoma

LCM:

Laser capture microdissection

HPLC-MS/MS:

High performance liquid chromatography coupled with tandem mass spectrometry

ESI-Q-TOF-MS:

Electrospray ionization quadrupole–time of flight mass spectrometry

References

  1. Roder DM. The epidemiology of gastric cancer. Gastric Cancer. 2002;5(Suppl 1):5–11. doi:10.1007/s10120-002-0203-6.

    Article  PubMed  Google Scholar 

  2. Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14(Suppl 2):ii31–6.

    PubMed  Google Scholar 

  3. Henning GT, Schild SE, Stafford SL, et al. Results of irradiation or chemo irradiation following resection of gastric adenocarcinoma. Int J Radiat Oncol Biol Phys. 2000;46(3):589–98. doi:10.1016/S0360-3016(99)00446-0.

    CAS  PubMed  Google Scholar 

  4. Reymond MA, Schlegel W. Proteomics in cancer. Adv Clin Chem. 2007;44:103–42. doi:10.1016/S0065-2423(07)44004-5.

    Article  CAS  PubMed  Google Scholar 

  5. Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31. doi:10.1007/s00216-007-1486-6.

    Article  CAS  PubMed  Google Scholar 

  6. Sakai J, Kojima S, Yanagi K, Kanaoka M. 18O-labeling quantitative proteomics using an ion trap mass spectrometer. Proteomics. 2005;5(1):16–23. doi:10.1002/pmic.200300885.

    Article  CAS  PubMed  Google Scholar 

  7. Lassman ME, Rahbar A, Medintz IL, Ligler FS. Incorporation of (18)oxygen into peptide mixtures and analysis with multi-dimensional chromatography and mass-spectroscopy. Anal Lett. 2007;40(10):1864–78. doi:10.1080/00032710701384659.

    Article  CAS  Google Scholar 

  8. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science. 1996;274(5289):998–1001. doi:10.1126/science.274.5289.998.

    Article  CAS  PubMed  Google Scholar 

  9. Craven RA, Banks RE. Laser capture microdissection and proteomics: possibilities and limitation. Proteomics. 2001;1(10):1200–4. doi:10.1002/1615-9861(200110)1:10<1200::AID-PROT1200>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  10. Lane CS, Wang Y, Betts R, et al. Comparative cytochrome P450 proteomics in the livers of immunodeficient mice using 18O stable isotope labeling. Mol Cell Proteomics. 2007;6(6):953–62. doi:10.1074/mcp.M600296-MCP200.

    Article  CAS  PubMed  Google Scholar 

  11. Zeeberg BR, Feng W, Wang G, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4(4):R28. doi:10.1186/gb-2003-4-4-r28.

    Article  PubMed  Google Scholar 

  12. Zang L, Toy DP, Hancock WS, et al. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and O-16/O-18 isotopic labeling. J Proteome Res. 2004;3(3):604–12. doi:10.1021/pr034131l.

    Article  CAS  PubMed  Google Scholar 

  13. Hood BL, Darfler MM, Guiel TG, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4(11):1741–53. doi:10.1074/mcp.M500102-MCP200.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Ferrer D, Ramos-Fernandez A, Martinez-Bartolome S, et al. Quantitative proteomics using (16)O/(18)O labeling and linear ion trap mass spectrometry. Proteomics. 2006;6(Suppl 1):S4–11. doi:10.1002/pmic.200500375.

    Article  PubMed  Google Scholar 

  15. Miyagi M, Rao KC. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom Rev. 2007;26(1):121–36. doi:10.1002/mas.20116.

    Article  CAS  PubMed  Google Scholar 

  16. Seow TK, Liang RC, Leow CK, Chung MC. Hepatocellular carcinoma: from bedside to proteomics. Proteomics. 2001;1(10):1249–63. doi:10.1002/1615-9861(200110)1:10<1249::AID-PROT1249>3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  17. Bantscheff M, Dumpelfeld B, Kuster B. Femtomol sensitivity post-digest (18)O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom. 2004;18(8):869–76. doi:10.1002/rcm.1418.

    Article  CAS  PubMed  Google Scholar 

  18. Sun G, Anderson VE. A strategy for distinguishing modified peptides based on post-digestion 18O labeling and mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(19):2849–56. doi:10.1002/rcm.2133.

    Article  CAS  PubMed  Google Scholar 

  19. Fu Z, Kitagawa Y, Shen R, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate. 2006;66(3):248–56. doi:10.1002/pros.20319.

    Article  CAS  PubMed  Google Scholar 

  20. Minoo P, Zlobec I, Baker K, et al. Loss of raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am J Clin Pathol. 2007;127(5):820–7. doi:10.1309/5D7MM22DAVGDT1R8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (30000028, 30240056, 30370642), key research program from Science and Technology Committee of Hunan, China (04sk1006-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang GuiYing.

Additional information

Z. ZhiQiang and L. MaoYu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZhiQiang, Z., MaoYu, L., GuiYing, Z. et al. Identification of human gastric carcinoma biomarkers by differential protein expression analysis using 18O labeling and NanoLC-MS/MS coupled with laser capture microdissection. Med Oncol 27, 296–303 (2010). https://doi.org/10.1007/s12032-009-9208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9208-x

Keywords

Navigation