Skip to main content

Advertisement

Log in

Association of TMPRSS2 and KLK11 gene expression levels with clinical progression of human prostate cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Aim The aim of this study was to analyze the clinicopathological characteristics of TMPRSS2 and KLK11 gene expression levels in human prostate cancer (PCa), and to evaluate their clinical significance in the progression of PCa. Methods The expression of prostate-type and brain-type isoforms of KLK11 gene, and TMPRSS2 gene was analyzed by quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) in 63 PCa tissues. The correlation of TMPRSS2 and KLK11 gene expression with the clinicopathological characteristics and with the prognosis of PCa was subsequently assessed. Results: The mean values of TMPRSS2 (3.91 ± 0.78 in PCa vs. 0.26 ± 0.04 in normal prostate tissues) and both isoforms of KLK11 (prostate-type: 3.63 ± 0.42 in PCa vs. 0.49 ± 0.07 in normal prostate tissues; brain-type: 3.11 ± 0.30 in PCa vs. 0.46 ± 0.05 in normal prostate tissues) were significantly higher in cancer tissues compared with their normal counterparts. We found a significant positive correlation between TMPRSS2 expression and tumor stage (P = 0.02), Gleason score (P = 0.008), and tumor grade (P = 0.016). Regarding prostate-type KLK11, we identified a significant association between lower expression and higher tumor stage (P = 0.009), Gleason score (P = 0.01), and tumor grade (P = 0.006). No such association was seen with the brain-type isoform. The survival rate of the patients with TMPRSS2-high/KLK11-low expression was lowest (P = 0.003). Conclusion: The results suggest that the up-regulation of TMPRSS2 gene and the down-regulation of KLK11 gene in advanced and more aggressive tumors may open the feasibility of being used as biomarkers distinguishing the tumor aggressiveness as well as novel prognostic indicators for PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Del Rosso M, Fibbi G, Pucci M, D’Alessio S, Del Rosso A, Magnelli L, et al. Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clin Exp Metastasis. 2002;19:193–207. doi:10.1023/A:1015531321445.

    Article  PubMed  Google Scholar 

  2. Cocks TM, Moffatt JD. Protease-activated receptors: sentries for inflammation. Trends Pharmacol Sci. 2000;21:103–8. doi:10.1016/S0165-6147(99)01440-6.

    Article  CAS  PubMed  Google Scholar 

  3. Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999;17:4180–4.

    Google Scholar 

  4. Gan L, Lee I, Smith R, Argonza-Barrett R, Lei H, McCuaig J, et al. Sequencing and expression analysis of the serine protease gene cluster located in chromosome 19q13 region. Gene. 2000;257:119–30. doi:10.1016/S0378-1119(00)00382-6.

    Article  CAS  PubMed  Google Scholar 

  5. Diamandis EP, Yousef GM, Luo LY, Maqklara A, Obiezu CV. The new human kallikrein gene family: implications in carcinogenesis. Trends Endocrinol Metab. 2000;11:54–60. doi:10.1016/S1043-2760(99)00225-8.

    Article  CAS  PubMed  Google Scholar 

  6. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev. 2001;22:184–204. doi:10.1210/er.22.2.184.

    Article  CAS  PubMed  Google Scholar 

  7. Borgoño CA, Fracchioli S, Yousef GM, et al. Favorable prognostic value of tissue human kallikrein 11 (hk11) in patients with ovarian carcinoma. Int J Cancer. 2003;106:605–10. doi:10.1002/ijc.11296.

    Article  PubMed  Google Scholar 

  8. Scorilas A, Gregorakis AK. mRNA expression analysis of human kallikrein 11 (KLK11) may be useful in the discrimination of benign prostatic hyperplasia from prostate cancer after needle prostate biopsy. Biol Chem. 2006;387:789–93. doi:10.1515/BC.2006.099.

    Article  CAS  PubMed  Google Scholar 

  9. Gabison EE, Mourah S, Steinfels E. Differential expression of extracellular matrix metalloproteinase inducer (CD147) in normal and ulcerated corneas. Am J Pathol. 2005;166:209–19.

    CAS  PubMed  Google Scholar 

  10. Li Yu, Shang P, Qian A-R. Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro. World J Gastroenterol. 2003;9:2174–7.

    CAS  PubMed  Google Scholar 

  11. Schrgder FH, Wildhagen MF. Screening for prostate cancer: evidence and perspectives. BJU Int. 2001;88:811–7. doi:10.1046/j.1464-4096.2001.02449.x.

    Article  Google Scholar 

  12. Mehra R, Tomlins SA, Shen R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20:538–44. doi:10.1038/modpathol.3800769.

    Article  CAS  PubMed  Google Scholar 

  13. Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res. 2001;61:1686–92.

    CAS  PubMed  Google Scholar 

  14. Chay CH, Cooper CR, Gendernalik JD, Dhanasekaran SM, Chinnaiy AM, Rubin MA, et al. A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology. 2002;60:760–5. doi:10.1016/S0090-4295(02)01969-6.

    Article  PubMed  Google Scholar 

  15. Greenberg DL, Mize GJ, Takayama TK. Protease-activated receptor mediated RhoA signalling and cytoskeletal reorganization in LNCaP cells. Biochemistry. 2003;42:702–9. doi:10.1021/bi027100x.

    Article  CAS  PubMed  Google Scholar 

  16. Velasco G, Cal S, Quesada V, Sanchez LM, Lopez-Otin C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem. 2002;277:37637–46. doi:10.1074/jbc.M203007200.

    Article  CAS  PubMed  Google Scholar 

  17. Diamandis EP. Prostate-specific antigen—its usefulness in clinical medicine. Trends Endocrinol Metab. 1998;9:310–6. doi:10.1016/S1043-2760(98)00082-4.

    Article  CAS  PubMed  Google Scholar 

  18. Diamandis EP, Yousef GM, Soosaipillai AR, Bunting P. Human kallikrein 6 (zyme/protease M/neurosin): a new serum biomarker of ovarian carcinoma. Clin Biochem. 2000;33:579–83. doi:10.1016/S0009-9120(00)00182-X.

    Article  CAS  PubMed  Google Scholar 

  19. Luo LY, Bunting P, Scorilas A, Diamandis EP. Human kallikrein 10: a novel tumor marker for ovarian carcinoma? Clin Chim Acta. 2001;306:111–8. doi:10.1016/S0009-8981(01)00401-6.

    Article  CAS  PubMed  Google Scholar 

  20. Yousef GM, Stephan C, Scorilas A, Ellatif MA, Jung K, Kristiansen G, et al. Differential expression of the human kallikrein gene 14 (KLK14) in normal and cancerous prostatic tissues. Prostate. 2003;56:287–92. doi:10.1002/pros.10263.

    Article  CAS  PubMed  Google Scholar 

  21. Diamandis EP, Yousef GM. Human tissue kallikrein gene family: a rich source of novel disease biomarkers. Expert Rev Mol Diagn. 2001;1:182–90. doi:10.1586/14737159.1.2.182.

    Article  CAS  PubMed  Google Scholar 

  22. Diamandis EP, Okui A, Mitsui S, Luo LY, Soosaipillai A, Grass L, et al. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res. 2002;62:295–300.

    CAS  PubMed  Google Scholar 

  23. Nakamura T, Mitsui S, Okui A, Miki T, Yamaguchi N. Molecular cloning and expression of a variant form of hippostasin/KLK11 in prostate. Prostate. 2003;54:299–305. doi:10.1002/pros.10191.

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura T, Stephan C, Scorilas A, Yousef GM, Jung K, Diamandis EP. Quantitative analysis of hippostasin/KLK11 gene expression in cancerous and noncancerous prostatic tissues. Urology. 2003;61:1042–6. doi:10.1016/S0090-4295(02)02443-3.

    Article  PubMed  Google Scholar 

  25. Stavropouloua P, Gregorakisb AK, Plebanic M, Scorilasa A. Expression analysis and prognostic significance of human kallikrein 11 in prostate cancer. Clin Chim Acta. 2005;357:190–5. doi:10.1016/j.cccn.2005.03.026.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of Guangdong Province (No. 04003650) and the Key Programs of Science and Technology of Guangzhou city (No. 200323-E4053) and National High Technology Research and Development Project of China (No. 2006AA02A245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weide Zhong.

Additional information

Xuecheng Bi, Huichan He, Yongkang Ye are contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, X., He, H., Ye, Y. et al. Association of TMPRSS2 and KLK11 gene expression levels with clinical progression of human prostate cancer. Med Oncol 27, 145–151 (2010). https://doi.org/10.1007/s12032-009-9185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9185-0

Keywords

Navigation