Skip to main content

Advertisement

Log in

MicroRNA-107 Ameliorates Damage in a Cell Model of Alzheimer’s Disease by Mediating the FGF7/FGFR2/PI3K/Akt Pathway

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), the most prevalent representation of dementia, is a neurodegenerative disease resulting from the degenerative disturbance of the central nervous system. Previous studies have indicated that miR-107 is reduced in the brain neocortex of patients with AD; however, its underlying mechanism is not clear. Therefore, the objective of this study was to explore the question of whether miR-107 participates in AD development. The study confirmed that the miR-107 expression levels were dramatically decreased in patients with AD and in beta-amyloid (Aβ) (Aβ)-treated SH-SY5Y cells compared with control groups. Upregulation of miR-107 reversed the inhibitory role of Aβ on cell proliferation and viability. In addition, miR-107 upregulation also ameliorated the Aβ-induced inflammation and apoptosis of SH-SY5Y cells. Furthermore, using bioinformatic prediction, dual-luciferase reporter assay (DLRA), quantitative polymerase chain reaction (qPCR), and Western blot (WB), miR-107 was confirmed to reduce the expression level of FGF7, and it subsequently deactivated the FGFR2/PI3K/Akt pathway. Moreover, FGF7 overexpression counteracted the role of miR-107 in the viability, proliferation, inflammation, and apoptosis of Aβ-induced SH-SY5Y cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  • Brookmeyer R, Evans DA, Hebert L, Langa KM, Heeringa SG, Plassman BL, Kukull WA (2011) National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement 7:61–73

    Article  Google Scholar 

  • Feng L, Xie Y, Zhang H, Wu Y (2012) miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol 29:856–863

    Article  CAS  Google Scholar 

  • Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  Google Scholar 

  • Götz J, Eckert A, Matamales M, Ittner LM, Liu X (2011) Modes of Aβ toxicity in Alzheimer’s disease. Cell Mol Life Sci 68:3359–3375

    Article  Google Scholar 

  • Grose R, Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16:179–186

    Article  CAS  Google Scholar 

  • Guan B, Li Q, Shen L, Rao Q, Wang Y, Zhu Y, Zhou X-J, Li X-H (2016) MicroRNA-205 directly targets Krüppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma. Int J Oncol 49:720–734

    Article  CAS  Google Scholar 

  • Jin Y, Tu Q, Liu M (2018) MicroRNA-125b regulates Alzheimer's disease through SphK1 regulation. Mol Med Rep 18:2373–2380

    CAS  PubMed  Google Scholar 

  • Ke S, Yang Z, Yang F, Wang X, Tan J, Liao B (2019) Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer's disease. Yonsei Med J 60:640–650

    Article  Google Scholar 

  • Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S (2014) Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther 6:35

    Article  Google Scholar 

  • Knobloch M, Farinelli M, Konietzko U, Nitsch RM, Mansuy IM (2007) Aβ oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. J Neurosci 27:7648–7653

    Article  CAS  Google Scholar 

  • Kong J, Ren G, Jia N, Wang Y, Zhang H, Zhang W, Chen B, Cao Y (2013) Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer’s disease. Eur Neurol 70:233–241

    Article  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  Google Scholar 

  • Lee K-H, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT, Maitra A (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9:293–301

    Article  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  Google Scholar 

  • Li G-D, Wo Y, Zhong M-F, Zhang F-X, Bao L, Lu Y-J, Huang Y-D, Xiao H-S, Zhang X (2002) Expression of fibroblast growth factors in rat dorsal root ganglion neurons and regulation after peripheral nerve injury. Neuroreport 13:1903–1907

    Article  CAS  Google Scholar 

  • Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y, Zhang J, Yang J (2016) Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol 179:162–169

    Article  CAS  Google Scholar 

  • Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31:6627–6638

    Article  CAS  Google Scholar 

  • Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  CAS  Google Scholar 

  • Liu F, Zhang Z, Chen W, Gu H, Yan Q (2018) Regulatory mechanism of microRNA-377 on CDH13 expression in the cell model of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 22:2801–2808

    PubMed  Google Scholar 

  • Liu H, Wu Q-F, Li J-Y, Liu X-J, Li K-C, Zhong Y-Q, Wu D, Wang Q, Lu Y-J, Bao L (2015) Fibroblast growth factor 7 is a nociceptive modulator secreted via large dense-core vesicles. J Mol Cell Biol 7:466–475

    Article  Google Scholar 

  • Magnin E, Dumurgier J, Bouaziz-Amar E, Bombois S, Wallon D, Gabelle A, Lehmann S, Blanc F, Bousiges O, Hannequin D (2017) Alzheimer's disease cerebro-spinal fluid biomarkers: a clinical research tool sometimes useful in daily clinical practice of memory clinics for the diagnosis of complex cases. Rev Med Intern 38:250–255

    Article  CAS  Google Scholar 

  • Marcus JN, Schachter J (2011) Targeting post-translational modifications on tau as a therapeutic strategy for Alzheimer's disease. J Neurogenet 25:127–133

    Article  CAS  Google Scholar 

  • Miki T, Bottaro DP, Fleming TP, Smith CL, Burgess WH, Chan A, Aaronson SA (1992) Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci 89:246–250

    Article  CAS  Google Scholar 

  • Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harbor Perspect Med 2:a006338

    Article  Google Scholar 

  • Nelson PT, Wang W-X (2010) MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21:75–79

    Article  CAS  Google Scholar 

  • Ricciarelli R, d'Abramo C, Massone S, Marinari UM, Pronzato MA, Tabaton M (2004) Microarray analysis in Alzheimer's disease and normal aging. IUBMB Life 56:349–354

    Article  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  Google Scholar 

  • Sivanesan S, Tan A, Rajadas J (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10:316–323

    Article  CAS  Google Scholar 

  • Sun AX, Crabtree GR, Yoo AS (2013) MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 25:215–221

    Article  CAS  Google Scholar 

  • Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasuda J (2009) MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 4:e6677

    Article  Google Scholar 

  • Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H (2010) Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465:783–787

    Article  CAS  Google Scholar 

  • Villemagne VL, Masters CL (2014) The landscape of ageing—insights from AD imaging markers. Nat Rev Neurol 10:678–679

    Article  Google Scholar 

  • Wang P, Wu T, Zhou H, Jin Q, He G, Yu H, Xuan L, Wang X, Tian L, Sun Y (2016) Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res 35:22

    Article  Google Scholar 

  • Wang W-X, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  Google Scholar 

  • Wang W-X, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT (2010) miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol 177:334–345

    Article  CAS  Google Scholar 

  • Xiao H-S, Huang Q-H, Zhang F-X, Bao L, Lu Y-J, Guo C, Yang L, Huang W-J, Fu G, Xu S-H (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci 99:8360–8365

    Article  CAS  Google Scholar 

  • Zhang B, Wang Y, Li H, Xiong R, Zhao Z, Chu X, Li Q, Sun S, Chen S (2016) Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Des Dev Ther 10:1335

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Project of National Natural Science Foundation of China (No. 81760847); the Key Research and Development Program of Science and Technology Plan Project of Guangxi (No. Guike AB16380324); the Key Project of National Natural Science Foundation of China (No. 2018GXNSFDA050018); the Project of Guangxi Key Laboratory of Chinese Medicine Foundation Research (No. 16-380-58-04); the Youth Innovation Research Team of Guangxi University of Traditional Chinese Medicine (No. 2016QT004); and the High-level Talent Team Cultivation Project of Qihuang Project of Guangxi University of Traditional Chinese Medicine (No. 2018003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Tang.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wu, L., Hu, Y. et al. MicroRNA-107 Ameliorates Damage in a Cell Model of Alzheimer’s Disease by Mediating the FGF7/FGFR2/PI3K/Akt Pathway. J Mol Neurosci 70, 1589–1597 (2020). https://doi.org/10.1007/s12031-020-01600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01600-0

Keywords

Navigation