Skip to main content

Advertisement

Log in

Neuroprotective Effects of Apocynin and Galantamine During the Chronic Administration of Scopolamine in an Alzheimer’s Disease Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the most complicated neurodegenerative diseases, and several hypotheses have been associated with its development and progression, such as those involving glucose hypometabolism, the cholinergic system, calcium imbalance, inflammation, oxidative imbalance, microtubule instability, and the amyloid cascade, several of which are related to oxidative stress (free radical generation), which contributes to neuronal death. Therefore, several efforts have been made to establish a sporadic AD model that takes into account these hypotheses. One model that replicates the increase in amyloid beta (Aβ) and oxidative stress in vivo is the scopolamine model. In the present work, the chronic administration (6 weeks) of scopolamine was used to analyze the neuroprotective effects of apocynin and galantamine. The results showed that scopolamine induced cognitive impairment, which was evaluated 24 h after the final dose was administered. In addition, after scopolamine administration, the Aβ and superoxide anion levels were increased, and NADPH oxidase 2 (NOX2), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa B (NFkB) genes were overexpressed. These effects were not observed when either apocynin or galantamine was administered during the last 3 weeks of scopolamine treatment, and although the results from both molecules were related to lower Aβ production and, consequently, lower superoxide anion production, they were likely realized through different pathways. That is, both apocynin and galantamine diminished NADPH oxidase expression, but their effects on transcription factor expression differed. Moreover, experiments in silico showed that galantamine did not interact with the active site of beta secretase, whereas diapocynin, an apocynin metabolite, interacted with the beta-site APP-cleaving enzyme (BACE1) at the catalytic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Uddin S. Abdullah Al M, Hossain S, Ashaduzzaman M, Noor AA, Hossain S, Uddin J, Sarker J, Asaduzzaman (2016) Neuroprotective effect of Phyllanthus acidus L. on learning and memory impairment in scopolamine-induced animal model of dementia and oxidative stress: natural wonder for regulating the development and progression of Alzheimer’s disease. Adv Alzheimer’s Dis 5(2):53–72

  • Amanso A, Lyle AN, Griendling KK (2017) NADPH oxidases and measurement of reactive oxygen species. Methods Mol Biol 1527:219–232

    Article  CAS  PubMed  Google Scholar 

  • Autore F, Pagano B, Fornili A, Rittinger K, Fraternali F (2010) In silico phosphorylation of the autoinhibited form of p47phox: insights into the mechanism of activation. Biophys J 99(11):3716–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajo R, Pusil S, López ME, Canuet L, Pereda E, Osipova D, Maestú F, Pekkonen E (2015) Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease. Sci Rep 5:9748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  • Bhuvanendran S, Kumari Y, Othman I, Shaikh MF (2018) Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model. Front Pharmacol 9:665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Block ML (2008) NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 2008. https://doi.org/10.1186/1471-2202-9-S2-S8)

  • Buccafusco JJ, (2009) Chapter 17 The revival of scopolamine reversal for the assessment of cognition-enhancing drugs. Authors Buccafusco JJ. In: Methods of behavior analysis in neuroscience. frontiers in neuroscience. 2nd edition. CRC Press/Taylor & Francis; Boca Raton, FL.

  • Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24(9):471–478

    Article  CAS  PubMed  Google Scholar 

  • Caselli RJ, Beach TG, Knopman DS, Graff-Radford NR (2017) Alzheimer disease: scientific breakthroughs and translational challenges. Mayo Clin Proc 92(6):978–994

    Article  PubMed  Google Scholar 

  • Chiba K, Kawakami K, Tohyama K (1998) Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol in Vitro 12(3):251–258

    Article  CAS  PubMed  Google Scholar 

  • Cole SL, Vassar R (2007) The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener 2(22)

  • Diaz A, Escobedo C, Treviño S, Chávez R, Lopez-Lopez G, Moran C, Guevara J, Venegas B, Muñoz-Arenas G (2018) Metabolic syndrome exacerbates the recognition memory impairment and oxidative-inflammatory response in rats with an intrahippocampal injection of amyloid beta 1–42. Oxidative Med Cell Longev 2018:1358057

    Article  CAS  Google Scholar 

  • Do Carmo S, Cuello AC (2013) Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 8:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egea J, Martín-de-Saavedra MD, Parada E, Romero A, Del Barrio L, Rosa AO, García AG, López MG (2012) Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology. 62(2):1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Escudero-Lourdes C, Uresti-Rivera EE, Oliva-González C, Torres-Ramos MA, Aguirre-Bañuelos P, Gandolfi AJ (2016) Cortical astrocytes acutely exposed to the monomethylarsonous acid (MMAIII) show increased pro-inflammatory cytokines gene expression that is consistent with APP and BACE-1: over-expression. Neurochem Res 41(10):2559–2572

    Article  CAS  PubMed  Google Scholar 

  • Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adhes Migr 3(1):88–93

    Article  Google Scholar 

  • Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M (2014) Repeated intra-hippocampal injection of beta-amyloid 25–35 induces a reproducible impairment of learning and memory: Considering caspase-3 and MAPKs activity. Eur J Pharmacol 726:33–40

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS, H. (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141(7):1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Rodríguez M, Correa-Basurto J, Gutiérrez A, Vitorica J, Rosales-Hernández MC (2016) Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Eur J Med Chem 29(124):1142–1154

    Article  CAS  Google Scholar 

  • Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Reports 4(5):519–522

    Article  CAS  Google Scholar 

  • Hur J, Lee P, Kim MJ, Kim Y, Cho YW (2010) Ischemia-activated microglia induces neuronal injury via activation of gp91phox NADPH oxidase. Biochem Biophys Res Commun 391(3):1526–1530

    Article  CAS  PubMed  Google Scholar 

  • Janas AM, Cunningham SC, Duffy KB, Devan BD, Greig NH, Holloway HW, Yu QS, Markowska AL, Ingram DK, Spangler EL (2005) The cholinesterase inhibitor, phenserine, improves Morris water maze performance of scopolamine-treated rats. Life Sci 76(10):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Johnson DK, Schillinger KJ, Kwait DM, Hughes CV, McNamara EJ, Ishmael F, O’Donnell RW, Chang MM, Hogg MG, Dordick JS, Santhanam L, Ziegler LM, Holland JA (2002) Inhibition of NADPH oxidase activation in endothelial cells by ortho -methoxy-substituted catechols. Endothelium 9(3):191–203

    Article  CAS  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D (2005) Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res 30(6–7):927–935

    Article  CAS  PubMed  Google Scholar 

  • Kaur U, Banerjee P, Bir A, Sinha M, Biswas A, Chakrabarti S (2015) Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: the NF-κB connection. Curr Top Med Chem 15(5):446–457

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Vaziri ND (2010) Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Ren Physiol 298(3):F662–F671

    Article  CAS  Google Scholar 

  • Kim HJ, Shin EJ, Lee BH, Choi SH, Jung SW, Cho IH, Hwang SH, Kim JY, Han JS, Chung C, Jang CG, Rhim H, Kim HC, Nah SY (2015) Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-β protein, and mouse model of Alzheimer’s disease. Mol Cell 38(9):796–805

    Article  CAS  Google Scholar 

  • Kimura R, Devi L, Ohno M (2010) Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J Nurochem 113(1):248–261

    Article  CAS  Google Scholar 

  • Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY (2015) Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta 1850(4):794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumju Y, Yoonjin Y, Jinhyuk L, Woo-Sik J, Chi-Tang H, Mira J (2017) Polymethoxyflavones: Novel β-Secretase (BACE1) Inhibitors from citrus peels. Nutrients. 9(9):973

    Article  CAS  Google Scholar 

  • Li M, Liu Z, Zhuan L, Wang T, Guo S, Wang S, Liu J, Ye Z (2013) Effects of apocynin on oxidative stress and expression of apoptosis-related genes in testes of diabetic rats. Mol Med Rep 7(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Li XH, Zhang S, Tu Y, Wang YM, Sun HT (2014) 7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res 17(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu X, He Y, Zheng Q, Wang M, Wu Y, Zhang Y, Wang C (2017) Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway. Eur J Pharmacol 797:124–133

    Article  CAS  PubMed  Google Scholar 

  • Liskowsky W, Schliebs (2006) Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci 24(2–3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Lull ME, Levesque S, Surace MJ, Block ML (2011) Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)SL mice. PLoS One 6(5):e20153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macías Pérez ME, Hernández Rodríguez M, Cabrera Pérez LC, Fragoso-Vázquez MJ, Correa-Basurto J, Padilla-Martínez II, Méndez Luna D, Mera Jiménez E, Flores Sandoval C, Tamay Cach F, Rosales-Hernández MC (2017) Aromatic regions govern the recognition of NADPH Oxidase inhibitors as diapocynin and its analogues. Arch Pharm (Weinheim) 350(10):e1700041

    Article  CAS  Google Scholar 

  • Macías-Pérez ME, Martínez-Ramos F, Padilla-Martínez II, Correa-Basurto J, Kispert L, Mendieta-Wejebe JE, Rosales-Hernández MC (2013) Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico. Biosci Rep 33(4):e00055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manea A, Manea SA, Gafencu AV, Raicu M (2007) Regulation of NADPH oxidase subunit p22 phox by NF-kB in human aortic smooth muscle cells. Arch Physiol Biochem 113(4–5):163–172

    Article  CAS  PubMed  Google Scholar 

  • Matharua B, Gibsona G, Parsonsa R, Huckerbyb TN, Mooreb SA, Cooperb LJ, Millichampb R, Allsopb D, Austen B (2009) Galantamine inhibits β-amyloid aggregation and cytotoxicity. J Neurol Sci 280(1-2):49–58

    Article  CAS  Google Scholar 

  • Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36(5):747–751

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olukman M, Orhan CE, Celenk FG, Ulker S (2010) Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complicat 24(6):415–423

    Article  Google Scholar 

  • Oz M, Petroianu G, Lorke DE (2016) α7-Nicotinic acetylcholine receptors: new therapeutic avenues in Alzheimer’s disease In: Li M. (eds) Nicotinic acetylcholine receptor technologies. Neuromethods, vol 117, pag 149–169. Humana Press, New York, NY

    Chapter  Google Scholar 

  • Rahimzadegan M, Soodi M (2018) Comparison of memory impairment and oxidative stress following single or repeated dosesadministration of scopolamine in rat hippocampus. Basic Clin Neurosci 9(1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66(1):75–85

    Article  CAS  PubMed  Google Scholar 

  • Rosa CM, Gimenes R, Campos DH, Guirado GN, Gimenes C, Fernandes AA, Cicogna AC, Queiroz RM, Falcão-Pires I, Miranda-Silva D, Rodrigues P, Laurindo FR, Fernandes DC, Correa CR, Okoshi MP, Okoshi K (2016) Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol 15(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta U, Nilson AN, Kayed R (2016) The Role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine. 6:42–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen D, Dalton TP, Nebert DW, Shertzer HG (2005) Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem 280(27):25305–25312

    Article  CAS  PubMed  Google Scholar 

  • Simonyi A, Serfozo P, Lehmidi TM, Cui J, Gu Z, Lubahn DB, Sun AY, Sun GY (2014) The neuroprotective effects of apocynin. Front Biosci 1(4):2183–2193

    Google Scholar 

  • t Hart BA, Copray S, Philippens I (2014) Apocynin, a low molecular oral treatment for neurodegenerative disease. Biomed Res Int 298020

  • Tang KS (2019) The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci 15(233):116695

    Article  CAS  Google Scholar 

  • Trumbull KA, McAllister D, Gandelman MM, Fung WY, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman JS (2012) Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis 45(1):137–144

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  • Vallejo-Illarramendi A, Torres-Ramos M, Melone M, Conti F, Matute C (2005) Clozapine reduces GLT-1 expression and glutamate uptake in astrocyte cultures. GLIA 50(3):276–279

    Article  PubMed  Google Scholar 

  • Venault P, Chapouthier G, de Carvalho LP, Simiand J, Morre M, Dodd RH, Rossier J (1986) Benzodiazepine impairs and β-carboline enhances performance in learning and memory tasks. Nature 321(6073):864–866

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1240–1247

    Article  CAS  PubMed  Google Scholar 

  • Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43(4):621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ximenes VF, Kanegae MP, Rissato SR, Galhiane MS (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457(2):134–141

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Ding M, Chen XX, Lu Q (2014) Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience 275:54–61

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Consejo Nacional de Ciencia y Tecnología CB286653, SIPCOFAA-IPN, SIP20195089 for MCRH and CONACYT 254600 and 782 for JCB and scholarships from Consejo Nacional de Ciencia y Tecnología to study MD to EJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Cecilia Rosales-Hernández.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, E., Villalobos-Acosta, D.M.Á., Torres-Ramos, M.A. et al. Neuroprotective Effects of Apocynin and Galantamine During the Chronic Administration of Scopolamine in an Alzheimer’s Disease Model. J Mol Neurosci 70, 180–193 (2020). https://doi.org/10.1007/s12031-019-01426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01426-5

Keywords

Navigation