Skip to main content

Advertisement

Log in

miR-98-5p Acts as a Target for Alzheimer’s Disease by Regulating Aβ Production Through Modulating SNX6 Expression

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Accumulation of amyloid β-peptide (Aβ) in the brain of Alzheimer disease (AD) patients is believed to be the main pathological feature of the disease. Meanwhile, miR-98-5p dysregulation was found in AD. However, whether miR-98-5p is involved in the accumulation of Aβ in AD, the underlying molecule mechanism remains unclear. In the present study, we confirmed that miR-98-5p negatively regulated sorting nexin 6 (SNX6) expression by targeting the 3′-UTR of SNX6 mRNA. Downregulation of miR-98-5p alleviated Aβ-induced viability inhibition and decreased apoptosis in SK-N-SH and SH-SY5Y cells by upregulating SNX6 expression. Furthermore, downregulation of miR-98-5p decreased SNX6-dependent levels of Aβ40, Aβ42, β-site APP-cleaving enzyme 1 (BACE1), soluble amyloid precursor protein β (sAPPβ), and membrane-associated APP β-carboxyl terminal fragment (βCTF) in SK-N-SH and HEK293 cells. Our findings demonstrate that miR-98-5p modulates SNX6 expression and thus plays a critical role in accumulation of Aβ. Therefore, miR-98-5p may be a novel therapeutic target for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ben Halima S, Siegel G, Rajendran L (2016) miR-186 in Alzheimer’s disease: a big hope for a small RNA? J Neurochem 137:308–311

    Article  CAS  PubMed  Google Scholar 

  • Bozyczko-Coyne D, O’Kane TM, Wu ZL, Dobrzanski P, Murthy S, Vaught JL, Scott RW (2001) CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Aβ-induced cortical neuron apoptosis. J Neurochem 77:849–863

    Article  CAS  PubMed  Google Scholar 

  • Cullen PJ (2008) Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9:574–582

    Article  CAS  PubMed  Google Scholar 

  • Delay C, Hébert, SS (2011) MicroRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimer’s Dis. doi:10.4061/2011/894938

  • Delay C, Mandemakers W, Hébert SS (2012) MicroRNAs in Alzheimer’s disease. Neurobiol Dis 46:285–290

    Article  CAS  PubMed  Google Scholar 

  • Femminella GD, Ferrara N, Rengo G (2015) The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng X, Liang N, Zhu D, et al. (2013) Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One 8:e59888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP (2002) Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid β-peptide. Neruomol Med 1:125–135

    Article  CAS  Google Scholar 

  • Hébert SS, Horré K, Nicolaï L, et al. (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci 105:6415–6420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y-K, Wang X, Li L, Du Y-H, Ye H-T, Li C-Y (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29:745–751

    Article  CAS  PubMed  Google Scholar 

  • Jia LH, Liu YN (2016) Downregulated serum miR-223 servers as biomarker in Alzheimer’s disease. Cell Biochem Funct 34:233–237

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoon H, Ramírez CM, Lee S-M, Hoe H-S, Fernández-Hernando C, Kim J (2012) miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp Neurol 235:476–483

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Asai M, Tsukita K, et al. (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:487–496

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Retamal C, Cuitiño L, et al. (2008) Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 283:11501–11508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-S, Lee HJ, Kim DH, et al. (2010) Activation of PERK signaling attenuates Aβ-mediated ER stress. PLoS One 5:e10489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ST, Chu K, Jung KH, et al. (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72:269–277

    Article  CAS  PubMed  Google Scholar 

  • Liu QY, Chang M, Lei JX, Koukiekolo R, Smith B, Zhang D, Ghribi O (2013) Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease. Ame J Neurodegener Dis 3:33–44

    Google Scholar 

  • Mamada N, Tanokashira D, Hosaka A, Kametani F, Tamaoka A, Araki W (2015) Amyloid β-protein oligomers upregulate the β-secretase, BACE1, through a post-translational mechanism involving its altered subcellular distribution in neurons. Mol Brain 8:1

    Article  CAS  Google Scholar 

  • Mantena SK, Sharma SD, Katiyar SK (2006) Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki–Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 27:2018–2027

    Article  CAS  PubMed  Google Scholar 

  • Mezache L, Mikhail M, Garofalo M, Nuovo GJ (2015) Reduced miR-512 and the elevated expression of its targets cFLIP and MCL1 localize to neurons with hyperphosphorylated tau protein in Alzheimer disease. Appl Immunohistochem Mol Morphol 23:615–623

    Article  CAS  PubMed  Google Scholar 

  • Mizutani R, Yamauchi J, Kusakawa S, et al. (2009) Sorting nexin 3, a protein upregulated by lithium, contains a novel phosphatidylinositol-binding sequence and mediates neurite outgrowth in N1E-115 cells. Cell Signal 21:1586–1594

    Article  CAS  PubMed  Google Scholar 

  • Montarolo F, Parolisi R, Hoxha E, Boda E, Tempia F (2013) Early enriched environment exposure protects spatial memory and accelerates amyloid plaque formation in APP Swe/PS1 L166P mice. PLoS One 8:e69381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DB, Gillentine MA, Botezatu NM, Wilson KA, Benson AE, Langeland JA (2013) Asynchronous Evolutionary Origins of Aβ and BACE1. Mol Biol Evol 31:696-702

  • Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim T-W (2010) Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 24:2783–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira PA, Tomás JF, Queiroz JA, Figueiras AR, Sousa F (2016) Recombinant pre-miR-29b for Alzheimer’s disease therapeutics. Sci Rep 6

  • Sochor M, Basova P, Pesta M, et al. (2014) Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 14:1

    Article  CAS  Google Scholar 

  • Song J, Lee JE (2015) miR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function. Front Aging Neurosci 7:61

  • Spilman P, Jagodzinska B, Bredesen DE, John V (2015) Enhancement of sAPPα as a therapeutic strategy for Alzheimer’s and other neurodegenerative diseases. HSOA J Alzheim Neurodegener Dis 1:001

    Google Scholar 

  • Tan L, Yu J-T, Tan M-S, et al. (2014) Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 40:1017–1027

    CAS  PubMed  Google Scholar 

  • Wang W-X, Rajeev BW, Stromberg AJ, et al. (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Huang T, Zhao Y, et al. (2014) Sorting nexin 27 regulates Ab production through modulating γ-secretase activity. Cell Rep 9:1023–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54

    Article  CAS  PubMed  Google Scholar 

  • Wood LB, Winslow AR, Proctor EA, et al. (2015) Identification of neurotoxic cytokines by profiling Alzheimer’s disease tissues and neuron culture viability screening. Sci Rep 5

  • Zhang B, Chen C, Wang A, Lin Q (2015) MiR-16 regulates cell death in Alzheimer’s disease by targeting amyloid precursor protein. Eur Rev Med Pharmacol Sci 19:4020–4027

    CAS  PubMed  Google Scholar 

  • Zhao Y, Wang Y, Yang J, Wang X, Zhang X, Zhang Y (2012) Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol Neurodegener 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Koo EH (2011) Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 6:1

    Article  CAS  Google Scholar 

  • Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, Duan D-X (2012) MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull 88:596–601

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Wang H, Dong W, et al. (2011) miR-29c regulates BACE1 protein expression. Brain Res 1395:108–115

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Yu P, Cheng H, et al. (2015) miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer’s disease. Brain Res 1624:95–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural Science Foundation of Science and Technology Department of Liaoning Province (no. 2013022042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, X., Wang, L. et al. miR-98-5p Acts as a Target for Alzheimer’s Disease by Regulating Aβ Production Through Modulating SNX6 Expression. J Mol Neurosci 60, 413–420 (2016). https://doi.org/10.1007/s12031-016-0815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0815-7

Keywords

Navigation