Skip to main content

Advertisement

Log in

Determination of the Best Concentration of Streptozotocin to Create a Diabetic Brain Using Histological Techniques

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the most important disorders among neurodegenerative diseases which is characterized by neurofibrillary tangles and senile plagues. Intercerebroventricular (ICV) streptozotocin administration is a form of sAD which was applied to examine different factors following AD. Previous reports used different doses of streptozotocin (STZ) to create Alzheimer’s model, but no standard dose has been introduced. Therefore, we decided to investigate the best concentration of STZ to induce a diabetic brain with lowest mortality rate and high severity of destruction. We treated rats with three different doses of STZ (STZ 1.5, 2.25, and 3 mg/kg, ICV). Spatial memory for treated rats was evaluated by Morris water maze (MWM). Locomotor activities of rats were assessed by open field test. Histological observation such as immunohistochemistry, immunofluorescence, and Nissl staining were performed on the brain especially in CA1, CA3, and DG regions of hippocampal neurons at residues P-ser396 and P-ser404. Our data suggest that although the percentage hyperphosphorylation of tau protein by injection of STZ 3 mg/kg was about 10 % more than STZ 2.25 mg/kg compared to the control group, we considered the latter doses due to no effect on motor activities and enhance the number of glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackermann TF, Kempe DS, Lang F, Lang UE (2010) Hyperactivity and enhanced curiosity of mice expressing PKB/SGK-resistant glycogen synthase kinase-3 (GSK-3). Cell Physiol Biochem 25:775–786

    Article  CAS  PubMed  Google Scholar 

  • Barilar JO, Knezovic A, Grünblatt E, Riederer P, Salkovic-Petrisic M (2014) Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm 122(4):565–576

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  • Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48:29–69

    Article  CAS  PubMed  Google Scholar 

  • Care, Animals and Resources (1985) Guide for the care and use of laboratory animals. Academies, National

    Google Scholar 

  • Chen Y, Liang Z, Blanchard J, Dai C-L, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong C-X (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47:711–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JH, Johnson GVW (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88:349–358

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Qian C (2005) Expressions of Abeta1-40, Abeta1-42, tau202, tau396 and tau404 after intracerebroventricular injection of streptozotocin in rats. Di 1 jun yi da xue xue bao = Academic Journal of the First Medical College of PLA 25:168–170, 173.

  • Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55:3320–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong C-X (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. The American Journal of Pathology 175:2089–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Khoury NB, Gratuze M, Papon M-A, Bretteville A, Planel E (2014) Insulin dysfunction and tau pathology. Front Cell Neurosci 8:1–18

    Article  Google Scholar 

  • Evans DB, Rank KB, Bhattacharya K, Thomsen DR, Gurney ME, Sharma SK (2000) Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau’s ability to promote microtubule assembly. J Biol Chem 275:24977–24983

    Article  CAS  PubMed  Google Scholar 

  • Garman RH (2011) Histology of the central nervous system. Toxicol Pathol 39:22–35

    Article  PubMed  Google Scholar 

  • Gong C-X, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15:2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong CX, Grundke-Iqbal I, Iqbal K (2010) Targeting tau protein in Alzheimer’s disease. Drugs Aging 27:351–365

    Article  CAS  PubMed  Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    Article  PubMed  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamat PK (2015) Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regeneration Research 10:1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Konrad R, Mikolaenko I, Tolar J, Liu K, Kudlow J (2001) The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic β-cell O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem J 356:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenzen S (2007) Alloxan and streptozotocin diabetes. Diabetologia 51:216–226

    Article  PubMed  Google Scholar 

  • Li T, Paudel HK (2006) Glycogen synthase kinase 3β phosphorylates Alzheimer’s disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 45:3125–3133

    Article  CAS  PubMed  Google Scholar 

  • Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305

    CAS  PubMed  Google Scholar 

  • Montilla-López P, Muñoz-Águeda MC, López MF, Muñoz-Castañeda JR, Bujalance-Arenas I, Túnez-Fiñana I (2002) Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer’s disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 451:237–243

    Article  PubMed  Google Scholar 

  • Naghdi N, Oryan S, Etemadi R (2003) The study of spatial memory in adult male rats with injection of testosterone enanthate and flutamide into the basolateral nucleus of the amygdala in Morris water maze. Brain Res 972:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ngarmukos C, Baur EL, Kumagai AK (2001) Co-localization of GLUT1 and GLUT4 in the blood–brain barrier of the rat ventromedial hypothalamus. Brain Res 900:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ooigawa H, Nawashiro H, Fukui S, Otani N, Osumi A, Toyooka T, Shima K (2006) The fate of Nissl-stained dark neurons following traumatic brain injury in rats: difference between neocortex and hippocampus regarding survival rate. Acta Neuropathol 112:471–481

    Article  CAS  PubMed  Google Scholar 

  • Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1:45–55

    CAS  PubMed  Google Scholar 

  • Raza H, John A (2012) Streptozotocin-induced cytotoxicity, oxidative stress and mitochondrial dysfunction in human hepatoma HepG2 cells. Int J Mol Sci 13:5751–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regan P, Piers T, Yi J-H, Kim D-H, Huh S, Park SJ, Ryu JH, Whitcomb DJ, Cho K (2015) Tau phosphorylation at serine 396 residue is required for hippocampal LTD. The Journal of Neuroscience 35:4804–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Sahara N (2013) Characteristics of tau oligomers. Front Neurol 4:1–6

    Article  CAS  Google Scholar 

  • Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Medical Principles and Practice 24:1–10

    Article  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Schaffer BA, Bertram L, Miller BL, Mullin K, Weintraub S, Johnson N, Bigio EH, Mesulam M, Wiedau-Pazos M, Jackson GR, Cummings JL, Cantor RM, Levey AI, Tanzi RE, Geschwind DH (2008) Association of GSK3β with Alzheimer disease and frontotemporal dementia. Arch Neurol 65:1368–1374

    PubMed  PubMed Central  Google Scholar 

  • Sjolander A, Andersson ME, Zetterberg H, Minthon L, Bogdanovic N, Blennow K (2009) Alzheimer’s disease: no effect of the CDK5 gene on CSF biomarkers, neuropathology or disease risk. Mol Med Report 2:989–992

    Article  Google Scholar 

  • Slutsky I, Abumaria N, Wu L-J, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao M-G, Zhuo M (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65:165–177

    Article  CAS  PubMed  Google Scholar 

  • Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, Lee WT, Lee KM, Lee JE (2014) Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J 55:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson L (2004) Brain maps: structure of the rat brain (2nd edn). Nature 363:347–350

    Google Scholar 

  • van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Götz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci 107:13888–13893

  • Wang J -z, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507:81–87

    Article  CAS  PubMed  Google Scholar 

  • Xu Z-P, Li L, Bao J, Wang ZH, Zeng J, Liu E-J, Li XG, Huang R-X, Gao D, Li M-Z (2014) Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS ONE 9:1–11

  • Zamani Z, Reisi P, Alaei H, Pilehvarian AA (2012) Effect of royal jelly on spatial learning and memory in rat model of streptozotocin-induced sporadic Alzheimer’s disease. Adv Biomed Res 1:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Yu G, Chi L, Zhu J, Zhang W, Zhang Y, Zhang L (2013) Neuroprotective effects of edaravone on cognitive deficit, oxidative stress and tau hyperphosphorylation induced by intracerebroventricular streptozotocin in rats. Neurotoxicology 38:136–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Tehran University and Institute Pasteur of Iran funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Riazi.

Ethics declarations

These animals’ experiments were carried out in accordance with recommendations from the Declaration of Helsinki and the internationally accepted principles for the use of experimental animals. All efforts were made to minimize animal suffering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan-Shasaltaneh, M., Naghdi, N., Choopani, S. et al. Determination of the Best Concentration of Streptozotocin to Create a Diabetic Brain Using Histological Techniques. J Mol Neurosci 59, 24–35 (2016). https://doi.org/10.1007/s12031-015-0702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0702-7

Keywords

Navigation