Skip to main content

Advertisement

Log in

In Vitro and In Vivo Modeling of Spinal and Bulbar Muscular Atrophy

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease characterized by late-onset, progressive degeneration of lower motor neurons and skeletal muscle atrophy. SBMA is caused by expansions of a CAG trinucleotide repeat in the gene encoding the androgen receptor (AR). One striking feature of SBMA is sex specificity: SBMA fully manifests only in males, whereas females show subclinical or mild disease manifestations even when homozygous for the mutation. Since the identification of the mutation responsible for SBMA in 1991, several cell and animal models have been developed to recapitulate the main features of disease in vitro and in vivo. In this review, we describe the most widely used cellular and animal models of SBMA, highlighting advantages and disadvantages in the use of these models to gain mechanistic and therapeutic insights into SBMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertelli MA, Scheller A, Brogley M, Robins DM (2006) Replacing the mouse androgen receptor with human alleles demonstrates glutamine tract length-dependent effects on physiology and tumorigenesis in mice. Mol Endocrinol 20(6):1248–1260

    Article  CAS  PubMed  Google Scholar 

  • Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652

    CAS  PubMed  Google Scholar 

  • Brooks BP, Paulson HL, Merry DE et al (1997) Characterization of an expanded glutamine repeat androgen receptor in a neuronal cell culture system. Neurobiol Dis 3(4):313–323

    Article  CAS  PubMed  Google Scholar 

  • Brooks BP, Merry DE, Paulson HL, Lieberman AP, Kolson DL, Fischbeck KH (1998) A cell culture model for androgen effects in motor neurons. J Neurochem 70(3):1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Chevalier-Larsen ES, O’Brien CJ, Wang H et al (2004) Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J Neurosci 24(20):4778–4786

    Article  CAS  PubMed  Google Scholar 

  • Chua JP, Reddy SL, Merry DE et al (2014) Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 23(5):1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes CJ, Ling SC, Guo LT et al (2014a) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82(2):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes CJ, Miranda HC, Frankowski H et al (2014b) Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci 17(9):1180–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dossena M, Bedini G, Rusmini P et al (2014) Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy. PLoS One 9(11), e112746

    Article  PubMed  PubMed Central  Google Scholar 

  • Durham HD, Dahrouge S, Cashman NR (1993) Evaluation of the spinal cord neuron X neuroblastoma hybrid cell line NSC-34 as a model for neurotoxicity testing. Neurotoxicology 14(4):387–395

    CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73(7):2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunseich C, Kats IR, Bott LC et al (2014a) Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat. Neuromuscul Disord 24(11):978–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunseich C, Zukosky K, Kats IR et al (2014b) Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiol Dis 70C:12–20

    Article  Google Scholar 

  • Jochum T, Ritz ME, Schuster C et al (2012) Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochim Biophys Acta 1822(6):1070–1078

    Article  CAS  PubMed  Google Scholar 

  • Katsuno M, Adachi H, Kume A et al (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Katsuno M, Adachi H, Doyu M et al (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med 9(6):768–773

    Article  CAS  PubMed  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

    Article  PubMed  Google Scholar 

  • Landis SC, Amara SG, Asadullah K et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malena A, Pennuto M, Tezze C et al (2013) Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol 126(1):109–121

    Article  CAS  PubMed  Google Scholar 

  • Monks DA, Johansen JA, Mo K et al (2007) Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci U S A 104(46):18259–18264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedelsky NB, Pennuto M, Smith RB et al (2010) Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67(6):936–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmsted JB, Carlson K, Klebe R, Ruddle F, Rosenbaum J (1970) Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A 65(1):129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzolo I, Burnett BG, Young JE et al (2007) Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum Mol Genet 16(13):1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Palazzolo I, Stack C, Kong L et al (2009) Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63(3):316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzolo I, Nedelsky NB, Askew CE et al (2010) B2 attenuates polyglutamine-expanded androgen receptor toxicity in cell and fly models of spinal and bulbar muscular atrophy. J Neurosci Res 88(10):2207–2216

    Article  CAS  PubMed  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146):859–863

    Article  CAS  PubMed  Google Scholar 

  • Parodi S, Pennuto M (2011) Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Front Neuroendocrinol 32(4):416–425

    Article  CAS  PubMed  Google Scholar 

  • Ramzan F, McPhail M, Rao P et al (2015) Distinct etiological roles for myocytes and motor neurons in a mouse model of Kennedy’s disease/spinobulbar muscular atrophy. J Neurosci 35(16):6444–6451

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan S, Harmison GG, Meyertholen K, Pennuto M, Burnett BG, Fischbeck KH (2009) Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum Mol Genet 18(1):27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao P, Monks DA (2009) A tetracycline-inducible and skeletal muscle-specific Cre recombinase transgenic mouse. Dev Neurobiol 69(6):401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar-Grueso EF, Kim S, Kim H (1991) Embryonic mouse spinal cord motor neuron hybrid cells. Neuroreport 2(9):505–508

    Article  CAS  PubMed  Google Scholar 

  • Sambataro F, Pennuto M (2012) Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Prog Neurobiol 97(2):152–172

    Article  CAS  PubMed  Google Scholar 

  • Scaramuzzino C, Casci I, Parodi S et al (2015) Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy. Neuron 85(1):88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard RL, Spangenburg EE, Chin ER, Roth SM (2011) Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development. Physiol Genomics 43(20):1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeoni S, Mancini MA, Stenoien DL et al (2000) Motoneuronal cell death is not correlated with aggregate formation of androgen receptors containing an elongated polyglutamine tract. Hum Mol Genet 9(1):133–144

    Article  CAS  PubMed  Google Scholar 

  • Sopher BL, Thomas PS Jr, LaFevre-Bernt MA et al (2004) Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41(5):687–699

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takeyama K, Ito S, Yamamoto A et al (2002) Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35(5):855–864

    Article  CAS  PubMed  Google Scholar 

  • Walcott JL, Merry DE (2002) Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbar muscular atrophy. J Biol Chem 277(52):50855–50859

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Joel Tito A, Rui YN, Zhang S (2015) Studying polyglutamine diseases in Drosophila. Exp Neurol

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Dadgar N, Albertelli M et al (2006) Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 116(10):2663–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Telethon-Italy and Provincia Autonoma di Trento (TCP12013 to M.P.), the Italian Ministry of Health (RF-2011-02350097 to M.P.), the French Muscular Dystrophy Association (18722 to M.P.), the Associazione Alzheimer Trento Onlus (to M.B.), the Bando Progetti Strategici di Ateneo-University of Trento (to M.P. and M.B.), and CIBIO internal funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Pennuto or Manuela Basso.

Ethics declarations

Ethical Approval

Animal care and experimental procedures were conducted in accordance with the University of Trento ethical committee and were approved by the Italian Ministry of Health.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennuto, M., Basso, M. In Vitro and In Vivo Modeling of Spinal and Bulbar Muscular Atrophy. J Mol Neurosci 58, 365–373 (2016). https://doi.org/10.1007/s12031-015-0677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0677-4

Keywords

Navigation