Skip to main content
Log in

High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Maternal nutrients play critical roles in modulating epigenetic events and exert long-term influences on the progeny’s health. Folic acid (FA) supplementation during pregnancy has decreased the incidence of neural tube defects in newborns, but the influence of high doses of maternal FA supplementation on infants’ brain development is unclear. The present study was aimed at investigating the effects of a high dose of gestational FA on the expression of genes in the cerebral hemispheres (CHs) of 1-day-old pups. One week prior to mating and throughout the entire period of gestation, female C57BL/6J mice were fed a diet, containing FA at either 2 mg/kg (control diet (CD)) or 20 mg/kg (high maternal folic acid (HMFA)). At postnatal day 1, pups from different dams were sacrificed and CH tissues were collected. Quantitative RT-PCR and Western blot analysis confirmed sex-specific alterations in the expression of several genes that modulate various cellular functions (P < 0.05) in pups from the HMFA group. Genomic DNA methylation analysis showed no difference in the level of overall methylation in pups from the HMFA group. These findings demonstrate that HMFA supplementation alters offsprings’ CH gene expression in a sex-specific manner. These changes may influence infants’ brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FA:

Folic acid

NTDs:

Neural tube defects

CD:

Control dose

HMFA:

High maternal folic acid

5-mC:

5-Methylcytosine

CH:

Cerebral hemisphere

SEM:

Standard error of the mean

References

  • Allen ND, Logan K, Lally G, Drage DJ, Norris ML, Keverne EB (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc. Natl. Acad.Sci.U.S.A 92:10782–10786

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    Article  PubMed  CAS  Google Scholar 

  • Bagley PJ, Selhub J (2000) Analysis of folate form distribution by affinity followed by reversed- phase chromatography with electrical detection. Clin Chem 46:404–411

    PubMed  CAS  Google Scholar 

  • Bailey LB, Gregory III JF (1999a) Folate metabolism and requirements. J Nutr 129:779–782

    PubMed  CAS  Google Scholar 

  • Bailey LB, Gregory III JF (1999b) Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr. 129:919–922

    PubMed  CAS  Google Scholar 

  • Bailey SW, Ayling JE (2009) The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc. Natl. Acad.Sci.U.S.A 106:15424–15429

    Article  PubMed Central  PubMed  Google Scholar 

  • Barua S, Chadman KK, Kuizon S, Buenaventura D, Stapley NW, Ruocco F, Begum U, Guariglia SR, Brown WT, Junaid MA (2014a) Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS ONE 9:e101674

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barua S, Junaid MA (2015) Lifestyle, pregnancy and epigenetic effects. Epigenomics 7:85–102

    Article  PubMed  CAS  Google Scholar 

  • Barua S, Kuizon S, Chadman KK, Brown WT, Junaid MA (2015) Microarray analysis reveals higher gestational folic acid alters expression of genes in the cerebellum of mice offspring-a pilot study. Brain Sci 5:14–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Barua S, Kuizon S, Chadman KK, Flory MJ, Brown WT, Junaid MA (2014c) Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenetics Chromatin 7:3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barua S, Kuizon S, Junaid MA (2014b) Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci 21:77

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bithell A (2011) REST: transcriptional and epigenetic regulator. Epigenomics. 3:47–58

    Article  PubMed  CAS  Google Scholar 

  • Campbell CE, Piper M, Plachez C, Yeh YT, Baizer JS, Osinski JM, Litwack ED, Richards LJ, Gronostajski RM (2008) The transcription factor nfix is essential for normal brain development. BMC Dev Biol 8:52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Canfield MA, Collins JS, Botto LD, Williams LJ, Mai CT, Kirby RS, Pearson K, Devine O, Mulinare J (2005) Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth defects Res.A clin. Mol Teratol 73:679–689

    Article  CAS  Google Scholar 

  • Chanson A, Sayd T, Rock E, Chambon C, Sante-Lhoutellier V, Potier DC, Brachet P (2005) Proteomic analysis reveals changes in the liver protein pattern of rats exposed to dietary folate deficiency. J Nutr 135:2524–2529

    PubMed  CAS  Google Scholar 

  • Chew TW, Jiang X, Yan J, Wang W, Lusa AL, Carrier BJ, West AA, Malysheva OV, Brenna JT, Gregory III JF, Caudill MA (2011) Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice. J. Nutr. 141:1475–1481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choumenkovitch SF, Selhub J, Wilson PW, Rader JI, Rosenberg IH, Jacques PF (2002) Folic acid intake from fortification in United States exceeds predictions. J. Nutr. 132:2792–2798

    PubMed  CAS  Google Scholar 

  • Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Grunder A, Sippel AE (2007) Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 27:3855–3867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Evers M, Cunningham-Rundles C, Hollander E (2002) Heat shock protein 90 antibodies in autism. Mol Psychiatry 7(Suppl 2):S26–S28

    Article  PubMed  CAS  Google Scholar 

  • Gabory A, Attig L, Junien C (2009) Sexual dimorphism in environmental epigenetic programming. Mol Cell Endocrinol 304:8–18

    Article  PubMed  CAS  Google Scholar 

  • Gabory A, Attig L, Junien C (2011a) Developmental programming and epigenetics. Am.J. Clin. Nutr. 94:1943S–1952S

    Article  PubMed  CAS  Google Scholar 

  • Gabory A, Attig L, Junien C (2011b) Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2:164–175

    Article  PubMed Central  PubMed  Google Scholar 

  • Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vige A, Breton C, Reusens B, Remacle C, Vieau D, Ekstrom TJ, Jais JP, Junien C (2010) Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS ONE 5:e14398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, Bruckl T, Biel M, Carell T (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 5:e15367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo JU, Szulwach KE, Su Y, Li Y, Yao B, Xu Z, Shin JH, Xie B, Gao Y, Ming GL, Jin P, Song H (2014) Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain. Front Biol (Beijing) 9:66–74

    Article  CAS  Google Scholar 

  • Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G (2013) Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. AmJ Clin Nutr 97:94–99

    Article  CAS  Google Scholar 

  • Heseker HB, Mason JB, Selhub J, Rosenberg IH, Jacques PF (2009) Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid. BrJ Nutr 102:173–180

    Article  CAS  Google Scholar 

  • Hoile SP, Lillycrop KA, Grenfell LR, Hanson MA, Burdge GC (2012) Increasing the folic acid content of maternal or post-weaning diets induces differential changes in phosphoenolpyruvate carboxykinase mRNA expression and promoter methylation in rats. Br.J. Nutr. 108:852–857

    Article  PubMed  CAS  Google Scholar 

  • Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY (2001) Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. Jama 285:2981–2986

    Article  PubMed  CAS  Google Scholar 

  • Horsthemke B (2014) In brief: genomic imprinting and imprinting diseases. J Pathol 232(5):485–487

    Article  PubMed  CAS  Google Scholar 

  • Junaid MA, Kuizon S, Cardona J, Azher T, Murakami N, Pullarkat RK, Brown WT (2011) Folic acid supplementation dysregulates gene expression in lymphoblastoid cells–implications in nutrition. Biochem. Biophys. Res.Commun. 412:688–692

    Article  PubMed  CAS  Google Scholar 

  • Kaminsky Z, Wang SC, Petronis A (2006) Complex disease, gender and epigenetics. Ann Med 38:530–544

    Article  PubMed  CAS  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA (2007) The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J. Neurosci. 27:13624–13634

    Article  PubMed  CAS  Google Scholar 

  • Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127:4195–4202

    PubMed  CAS  Google Scholar 

  • Liu J, Yao Y, Yu B, Mao X, Huang Z, Chen D (2013) Effect of maternal folic acid supplementation on hepatic proteome in newborn piglets. Nutrition 29:230–234

    Article  PubMed  CAS  Google Scholar 

  • Marean A, Graf A, Zhang Y, Niswander L (2011) Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum Mol Genet 20:3678–3683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martynoga B, Mateo JL, Zhou B, Andersen J, Achimastou A, Urban N, van den BD, Georgopoulou D, Hadjur S, Wittbrodt J, Ettwiller L, Piper M, Gronostajski RM, Guillemot F (2013) Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 27:1769–1786

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McEwen KR, Ferguson-Smith AC (2010) Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin 3:2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mikael LG, Deng L, Paul L, Selhub J, Rozen R (2013) Moderately high intake of folic acid has a negative impact on mouse embryonic development. Birth defects Res.A clin. Mol. Teratol. 97:47–52

    Article  CAS  Google Scholar 

  • Morrison KE, Rodgers AB, Morgan CP, Bale TL (2013) Epigenetic mechanisms in pubertal brain maturation. Neuroscience 264:17–24

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DK, Disteche CM (2006) High expression of the mammalian X chromosome in brain. Brain Res 1126:46–49

    Article  PubMed  CAS  Google Scholar 

  • Oommen AM, Griffin JB, Sarath G, Zempleni J (2005) Roles for nutrients in epigenetic events. J Nutr Biochem 16:74–77

    Article  PubMed  CAS  Google Scholar 

  • Ozaki T, Nishina H, Hanson MA, Poston L (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530:141–152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey Jr GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123:1939–1951

    PubMed  CAS  Google Scholar 

  • Salbaum JM, Kruger C, Kappen C (2013) Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to periconceptional folate supplementation. Biochim Biophys Acta 1832:1653–1661

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scheuerle A, Wilson K (2011) PARK2 copy number aberrations in two children presenting with autism spectrum disorder: further support of an association and possible evidence for a new microdeletion/microduplication syndrome. Am J Med Genet B neuropsychiatr Genet 156B:413–420

    Article  PubMed  CAS  Google Scholar 

  • Schumacher A, Petronis A (2006) Epigenetics of complex diseases: from general theory to laboratory experiments. Curr. Top. Microbiol.Immunol. 310:81–115

    PubMed  CAS  Google Scholar 

  • Seibt J, Armant O, Le Digarcher A, Castro D, Ramesh V, Journot L, Guillemot F, Vanderhaeghen P, Bouschet T (2012) Expression at the imprinted dlk1-gtl2 locus is regulated by proneural genes in the developing telencephalon. PLoS ONE 7:e48675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shorter KR, Anderson V, Cakora P, Owen A, Lo K, Crossland J, South AC, Felder MR, Vrana PB (2014) Pleiotropic effects of a methyl donor diet in a novel animal model. PLoS ONE 9:e104942

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sittig LJ, Redei EE (2014) Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain. Adv Genet 86:93–106

    Article  PubMed  Google Scholar 

  • Stifani S, Ma Q (2009) ‘Runxs and regulations’ of sensory and motor neuron subtype differentiation: implications for hematopoietic development. Blood Cells Mol Dis 43:20–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Sweeney MR, McPartlin J, Weir DG, Daly S, Pentieva K, Daly L, Scott JM (2005) Evidence of unmetabolised folic acid in cord blood of newborn and serum of 4-day-old infants. Br.J. Nutr. 94:727–730

    Article  PubMed  CAS  Google Scholar 

  • Theriault FM, Nuthall HN, Dong Z, Lo R, Barnabe-Heider F, Miller FD, Stifani S (2005) Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J. Neurosci. 25:2050–2061

    Article  PubMed  CAS  Google Scholar 

  • Tichopad A, Dilger M, Schwarz G, Pfaffl MW (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 31:e122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tomizawa S, Sasaki H (2012) Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet 57:84–91

    Article  PubMed  CAS  Google Scholar 

  • Tsai HW, Grant PA, Rissman EF (2009) Sex differences in histone modifications in the neonatal mouse brain. Epigenetics. 4:47–53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • U.S.Preventive Services Task Force (2009) Folic acid for the prevention of neural tube defects: U.S. Preventive services task force recommendation statement. Ann Intern Med 150:626–631

    Article  Google Scholar 

  • Williams LJ, Mai CT, Edmonds LD, Shaw GM, Kirby RS, Hobbs CA, Sever LE, Miller LA, Meaney FJ, Levitt M (2002) Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 66:33–39

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Qiu T, Ke X, Xiao X, Xiao T, Liang F, Zou B, Huang H, Fang H, Chu K, Zhang J, Liu Y (2014) Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2–3 years old toddlers. J Autism Dev Disord 44(7):1633–1640

    Article  PubMed Central  PubMed  Google Scholar 

  • Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S (2012) Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J. Neurosci. 32:11285–11298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the March of Dimes Foundation (12-FY12-170) and the New York State Office for People with Developmental Disabilities is gratefully acknowledged. We acknowledge Ms. Maureen Marlow for help with editorial corrections with the manuscript.

Authors' Contributions

WTB and MAJ conceived the experiments; SB, WTB, and MAJ designed the experiments; SB, SK, and MAJ performed the experiments; SB, SK, and MAJ analyzed the data; SB, SK, WTB, and MAJ contributed reagents/materials/analysis tools; SB wrote the paper; and WTB and MAJ critically revised the manuscript.

Financial Support

Financial support from the March of Dimes Foundation (12-FY12-170) and the New York State Office for People with Developmental Disabilities is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Junaid.

Ethics declarations

Competing Financial Interests

The authors declare no conflicting financial information.

Electronic Supplementary Material

Figure S1

The schematic diagram of the experimental design for this study (GIF 670 kb)

High Resolution Image (TIFF 277 kb)

Table S1

List of primers used in this study (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barua, S., Kuizon, S., Ted Brown, W. et al. High Gestational Folic Acid Supplementation Alters Expression of Imprinted and Candidate Autism Susceptibility Genes in a sex-Specific Manner in Mouse Offspring. J Mol Neurosci 58, 277–286 (2016). https://doi.org/10.1007/s12031-015-0673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0673-8

Keywords

Navigation