Skip to main content

Advertisement

Log in

Silencing of PINK1 Inhibits Insulin-Like Growth Factor-1-Mediated Receptor Activation and Neuronal Survival

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The etiology of Parkinson’s disease remains unknown. Mutations in PINK1 have provided an understanding of the molecular mechanisms of this pathology. PINK1 and Parkin are important in the dismissal of dysfunctional mitochondria. However, the role of PINK1 in the control of neuronal survival pathways is not clear. To determine the role of PINK1 in the control of the phosphatidyl inositol 3-kinase (PI3K)/Akt pathway mediated by insulin-like grow factor type 1 (IGF-1), we use a model of mesencephalic neurons (CAD cells), which were transfected with lentiviral PINK1 shRNA or control shRNA constructs. Silencing of PINK1 was determined by RT-PCR and immunoblotting; cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays; proteins of the PI3K/Akt signaling pathway were tested by immunoblotting and IGF-1 receptor, and mitochondria were examined using fluorescence microscopy. PINK1 shRNA-transfected cells showed a reduction in cell survival compared to control shRNA cells. Exposure to IGF-1 induced a rapid and high increase in the phosphorylation level of IGF-1 receptor in control shRNA-transfected cells; however, silencing of PINK1 decreases phosphorylation level of IGF-1 receptor and downstream target proteins such as Akt, GSK3-beta, IRS-1, and hexokinase. Our results further suggest that PINK1 may be regulating the PI3K/Akt neuronal survival pathway through tyrosine kinase receptors such as IGF-1 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OSIA:

Oxidative-stress-induced apoptosis

References

  • Akundi RS, Zhi L, Bueler H (2012) PINK1 enhances insulin-like growth factor-1-dependent Akt signaling and protection against apoptosis. Neurobiol Dis 45:469–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arboleda G, Waters C, Gibson RM (2005) Metabolic activity: a novel indicator of neuronal survival in the murine dopaminergic cell line CAD. J Mol Neurosci 27:65–77

    Article  CAS  PubMed  Google Scholar 

  • Arboleda G, Morales LC, Benitez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59:333–346

    Article  CAS  PubMed  Google Scholar 

  • Arena G, Gelmetti V, Torosantucci L et al (2013) PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ 20:920–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beilina A, Van Der BM, Ahmad R et al (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. ProcNatlAcadSciUS A 102:5703–5708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN (2013) Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A 110:12526–12534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  CAS  PubMed  Google Scholar 

  • Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci U S A 97:10236–10241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21:589–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi I, Kim J, Jeong H-K et al (2013) PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and downregulation of EGFR. Glia 61:800–812

    Article  PubMed Central  PubMed  Google Scholar 

  • Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudek H, Datta SR, Franke TF et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  CAS  PubMed  Google Scholar 

  • Durgadoss L, Nidadavolu P, Valli RK et al (2012) Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt. FASEB J 26:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Froestl W (2000) Receptors in neurodegenerative diseases. Pharm Acta Helv 74:247–251

    Article  CAS  PubMed  Google Scholar 

  • Geisler S, Holmstrom KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  • Gual P, Le Marchand-Brustel Y, Tanti J-F (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109

    Article  CAS  PubMed  Google Scholar 

  • Haque ME, Thomas KJ, D’Souza C et al (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci U S A 105:1716–1721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horton CD, Qi Y, Chikaraishi D, Wang JK (2001) Neurotrophin-3 mediates the autocrine survival of the catecholaminergic CAD CNS neuronal cell line. J Neurochem 76:201–209

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2002) Recent developments in the pathology of Parkinson’s disease. J Neural Transm Suppl 347–376

  • Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CH (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280:22297–22307

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Vives-Bauza C, Acin-Perez R et al (2009) PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS One 4:e4597

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S, Sawada T, Lee S et al (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8:e1002537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marongiu R, Spencer B, Crews L et al (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem 108:1561–1574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCoy MK, Kaganovich A, Rudenko IN, Ding J, Cookson MR (2014) Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum Mol Genet 23:145–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murata H, Sakaguchi M, Jin Y et al (2011) A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 286:7182–7189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pankratz N, Foroud T (2007) Genetics of Parkinson disease. Genet Med 9:801–811

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plun-Favreau H, Klupsch K, Moisoi N et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Pridgeon JW, Olzmann JA, Chin LS, Li L (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5:e172

    Article  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2003) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanchez-Mora RM, Arboleda H, Arboleda G (2012) PINK1 overexpression protects against C2-ceramide-induced CAD cell death through the PI3K/AKT pathway. J Mol Neurosci 47:582–594

    Article  CAS  PubMed  Google Scholar 

  • Sim CH, Gabriel K, Mills RD, Culvenor JG, Cheng H-C (2012) Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1). Hum Mutat 33:1408–1422

    Article  CAS  PubMed  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107:378–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HL, Chou AH, Wu AS et al (2011) PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim Biophys Acta 1812:674–684

    Article  CAS  PubMed  Google Scholar 

  • Willaime-Morawek S, Arbez N, Mariani J, Brugg B (2005) IGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3 K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2? Mol Brain Res 142:97–106

    Article  CAS  PubMed  Google Scholar 

  • Wood-Kaczmar A, Gandhi S, Yao Z et al (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 3:e2455

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu Z, Sawada T, Shiba K et al (2013) Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev 27:157–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PINK1 constructs were a kind gift from Dr. Mark Cookson (NIH, USA). CAD cells were a kind gift from Dr. Dona M. Chikaraishi, Department of Neurobiology, Duke University Medical Center, Durham NC, USA. This work was supported by a grant from COLCIENCIAS (110145221189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Arboleda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Zárate, M.J., Niño, A., Rojas, L. et al. Silencing of PINK1 Inhibits Insulin-Like Growth Factor-1-Mediated Receptor Activation and Neuronal Survival. J Mol Neurosci 56, 188–197 (2015). https://doi.org/10.1007/s12031-014-0479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0479-0

Keywords

Navigation