Skip to main content

Advertisement

Log in

Changes in the Basal Membrane of Dorsal Root Ganglia Schwann Cells Explain the Biphasic Pattern of the Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

STZ:

Streptozotocin

DRG:

Dorsal root ganglion

IDDM:

Insulin-dependent diabetes mellitus

HSPGs:

Heparan sulfate proteoglycans

BMs:

Basement membranes

References

  • Akunne HC, Soliman KF (1987) The role of opioid receptors in diabetes and hyperglycemia-induced changes in pain threshold in the rat. Psychopharmacology (Berlin) 93:167–172

    Article  CAS  Google Scholar 

  • Beisswenger PJ, Howell SK, Russell GB, Miller ME, Rich SS, Mauer M (2013) Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care 36:3234–3239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bollineni JS, Alluru I, Reddi AS (1997) Heparan sulfate proteoglycan synthesis and its expression are decreased in the retina of diabetic rats. Curr Eye Res 16:127–130

    Article  CAS  PubMed  Google Scholar 

  • Boulton AJM, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28:956–962

    Article  PubMed  Google Scholar 

  • Bradley J, King R, Muddle J, Thomas P (2000) The extracellular matrix of peripheral nerve in diabetic polyneuropathy. Acta Neuropathol 99:539–546

    Article  CAS  PubMed  Google Scholar 

  • Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR (1996) Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effect of insulin, aldose reductase inhibition and lidocaine. Pain 68:293–299

    Article  CAS  PubMed  Google Scholar 

  • Cameron NE, Cotter MA (1997) Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 46(suppl 2):S31–S37

    Article  CAS  PubMed  Google Scholar 

  • Cameron NE, Cotter MA (1999) Oxidative stress and abnormal lipid metabolism in diabetic complications. In: AAF S (ed) Frontiers in animal diabetes research. Chronic complication in diabetes. Harwood, Amsterdam, pp 97–130

    Google Scholar 

  • Campos C (2012) Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med 124:90–97

    Article  PubMed  Google Scholar 

  • Casellini CM, Vinik AI (2007) Clinical manifestations and current treatment options for diabetic neuropathies. Endocr Pract 13:550–566

    Article  PubMed  Google Scholar 

  • Conde-Knape K (2001) Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev 17:412–421

    Article  CAS  PubMed  Google Scholar 

  • Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53:81–88

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Maiya A (2014) Diabetic peripheral neuropathy and its evaluation in a clinical scenario: a review. J Postgrad Med 60:33–40

    Article  CAS  PubMed  Google Scholar 

  • Duran-Jimenez B, Dobler D, Moffatt S, Rabbani N, Streuli CH, Thornalley PJ, Tomlinson DR, Gardiner NJ (2009) Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58:2893–2903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyck PJ, Giannini C (1996) Pathologic alterations in the diabetic neuropathies of humans: a review. Neuropathol Exp Neurol 55:1181–1193

    Article  CAS  Google Scholar 

  • Ferreira-da-Silva FW, da Silva-Alves KS, Lemos-Dos-Santos M, de Oliveira KA, Joca HC, do Vale OC, Coelho-de-Souza AN, Leal-Cardoso JH (2013) n5-STZ diabetic model develops alterations in sciatic nerve and dorsal root ganglia neurons of Wistar rats. ISRN Endocrinol 2013:638028

    Article  PubMed Central  PubMed  Google Scholar 

  • Fox A, Eastwood C, Gentry C, Manning D, Urban L (1999) Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81:307–316

    Article  CAS  PubMed  Google Scholar 

  • Gabra BH, Benrezzak O, Pheng LH, D D, Daull P, Sirois P, Nantel F, Battistini B (2005) nhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist. J Neuropathol Exp Neurol 64:782–789

    Article  CAS  PubMed  Google Scholar 

  • Green DL, Stevens MJ, Obrosova I, Feldman EL (1999) Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 375:217–223

    Article  Google Scholar 

  • Hill RE, Williams PE (2002) A quantitative analysis of perineurial cell basement membrane collagen IV, laminin and fibronectin in diabetic and non-diabetic human sural nerve. J Anat 201:185–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii DN (1995) Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy. Brain Res Rev 20:47–67

    Article  CAS  PubMed  Google Scholar 

  • Kafri MDV, Wang N, Rabinowitz R, Korczyn AD, Chapman J (2002) Assessment of experimental autoimmune neuritis in the rat by electrophysiology of the tail nerve. Muscle Nerve 25:51–57

    Article  PubMed  Google Scholar 

  • Kamei J, Ogawa M, Kasuya Y (1990) Development of supersensitivity to substance P in the spinal cord of the streptozotocin-induced diabetic rat. Pharmacol Biochem Behav 35:473–475

    Article  CAS  PubMed  Google Scholar 

  • Kamiya H, Zhang W, Sima AA (2004) C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 56:827–835

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Nemoto K, Nakanishi K, Morishita R, Kaneda Y, Uenoyama M, Ikeda T, Fujikawa K (2005) Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 54:846–854

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kwon JK, Kwon YB (2012) Pain modality and spinal glia expression by streptozotocin induced diabetic peripheral neuropathy in rats. Lab Anim Res 28:131–136

    Article  PubMed Central  PubMed  Google Scholar 

  • King RHM (2001) The role of glycation on the pathogenesis of diabetic polyneuropathy. J Clin Pathol: Mol Pathol 54:400–408

    CAS  Google Scholar 

  • Kishi M, Tanabe J, Schmelzer JD, Low PA (2002) Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes 51:819–824

    Article  CAS  PubMed  Google Scholar 

  • Li F, Obrosova IG, Abatan O, Tian D, Larkin D, Stuenkel EL, Stevens MJ (2005) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 288:E29–E36

    Article  CAS  PubMed  Google Scholar 

  • Makino H, Ikeda S, Haramoto T, Ota Z (1992) Heparan sulfate proteoglycans are lost in patients with diabetic nephropathy. Nephron 61:415–421

    Article  CAS  PubMed  Google Scholar 

  • Malcangio M, Tomlinson DR (1998) A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 76:151–157

    Article  CAS  PubMed  Google Scholar 

  • Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa M, Miyata S, Carlsson A, Kamei J (2008) Preventive effect of acetyl-L-carnitine on the thermal hypoalgesia in streptozotocin-induced diabetic mice. Eur J Pharmacol 588:213–216

    Article  CAS  PubMed  Google Scholar 

  • Pertovaara A, Wei H, Kalmari J, Ruotsalainen M (2001) Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 167:425–434

    Article  CAS  PubMed  Google Scholar 

  • Pijl JWvd, Daha MR, Born Jvd, Verhagen NAM, Lemkes HHPJ, Bucala R, Berden JHM, Zwinderman AH, Bruijn JA, Es LAv, Woude FJvd (1998) Extracellular matrix in human diabetic nephropathy: reduced expression of heparan sulphate in skin basement membrane. Diabetologia 41Pages:791–798

  • Robinson D, Tieder M, Halperin N, Burshtein D, Nevo Z (1994) Maffucci’s syndrom—the result of neural abnormalities? Evidence of mitogenic neurotransmitters present in enchondromas and soft tissue hemangiomas. Cancer Chemother Rep 74:949–957

    CAS  Google Scholar 

  • Ryle C, Leow CK, Donaghy M (1997) Non-enzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 20:577–584

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Schmelzer JD, Zollman PJ, Low PA (1997) Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in longstanding diabetic rats. Acta Neuropathol (Berlin) 93:118–128

    Article  CAS  Google Scholar 

  • Shimizu F, Sano Y, Tominaga O, Maeda T, Abe MA, Kanda T (2013) Advanced glycation end-products disrupt the blood–brain barrier by stimulating the release of transforming growth factor-beta by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging 34:1902–1912

    Article  CAS  PubMed  Google Scholar 

  • Shreiber S, Backer MM, Kaufman JP, Pick CG (1998) Interaction between the tetracyclic antidepressant mianserin HCl and opioid receptors. Eur Neurol Pscycho Pharmacol 8:297–302

    Article  Google Scholar 

  • Shreiber S, Backer MM, Pick CG (1999) The antinociceptive effect of venlafaxine in mice is mediated through opioid and adrenergic mechanisms. Neuroscience Letters

  • Sidenius P, Jakobsen J (1980) Reduced perikaryal volume of lower motor and primary sensory neuron in early experimental diabetes. Diabetes 29:182–186

    Article  CAS  PubMed  Google Scholar 

  • Sima AA (2006) Pathological mechanisms involved in diabetic neuropathy: can we slow the process? Curr Opin Investig Drugs 7:324–337

    CAS  PubMed  Google Scholar 

  • Tandrup T (1993) A method for unbiased and efficient estimation of number and mean volume of specified neuron subtypes in rat dorsal root ganglion. J Comp Neurol 329:269–276

    Article  CAS  PubMed  Google Scholar 

  • Thomas PK, Tomlison DR (1993) Diabetic and hypoglycemic neuropathy. In: Dyck PJ, Thomas PK, Griffin JW, Low RA, Podulso JF (eds) Peripheral neuropathy. WB Saunders, Philadelphia, pp 1219–1250

    Google Scholar 

  • Tomlinson DR, Fernyhough P (1999) Neurotrophism in diabetic neuropathy. In: Frontiers in Animal Diabetes Research. Chronic complications in diabetes. ((ed) SA, ed), pp 167–182. Amsterdam: Harwood

  • Tseng MT, Chiang MC, Chao CC, Tseng WY, Hsieh ST (2013) fMRI evidence of degeneration-induced neuropathic pain in diabetes: enhanced limbic and striatal activations. Hum Brain Mapp 34:2733–2746

    Article  PubMed  Google Scholar 

  • Tsilibary EC (2003) Microvascular basement membranes in diabetes mellitus. J Pathol 200:537–546

    Article  CAS  PubMed  Google Scholar 

  • Vinik AI, Park TS, Stansberry KB, Pittenger GL (2000) Diabetic neuropathies. Review. Diabetologia 43:957–973

    Article  CAS  PubMed  Google Scholar 

  • West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61

    Article  CAS  PubMed  Google Scholar 

  • Witzke KA, Vinik AI (2005) Diabetic neuropathy in older adults. Rev Endocr Metab Disord 6:117–127

    Article  PubMed  Google Scholar 

  • Wright DE, Ryals JM, McCarson KE, Christianson JA (2004) Diabetes-induced expression of activating transcription factor 3 in mouse primary sensory neurons. J Peripher Nerv Syst 9:242–254

    Article  CAS  PubMed  Google Scholar 

  • Zochodne D (1999) Diabetic neuropathies: features and mechanisms. Brain Pathol 9:369–391

    Article  CAS  PubMed  Google Scholar 

  • Zochodne DW, Verge VM, Cheng C, Sun H, Johnston J (2001) Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 124(Pt 11):2319–2334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Acknowledgments to Dr. Yoav Chapman (Department of Human Physiology and Pharmacology, Sackler Medical School, University of Tel Aviv) for his assistance and help in electrophysiological study, to Prof. Beka Solomon and Dr. Vered Lavie (Department of Human Microbiology and Biotechnology, J Wise Faculty of Life Science, University of Tel Aviv) for their assistance and help in immunostaining analysis.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaim G. Pick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, M., Benromano, T., Shahar, A. et al. Changes in the Basal Membrane of Dorsal Root Ganglia Schwann Cells Explain the Biphasic Pattern of the Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats. J Mol Neurosci 54, 704–713 (2014). https://doi.org/10.1007/s12031-014-0424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0424-2

Keywords

Navigation