Skip to main content
Log in

Chemotactic Responses of Neural Stem Cells to SDF-1α Correlate Closely with Their Differentiation Status

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chemotaxis of neural stem/progenitor cells (NSCs) is regulated by a variety of factors, and much effort has been devoted to the delineation of factors that are involved in NSC migration. However, the relationship between NSC chemotactic migration and differentiation remains uncharacterized. In the present study, by comparing the transfilter migration rate, single-cell migration speed, and directional efficiency of NSCs in stromal cell-derived factor-1 alpha (SDF-1α)-induced Boyden chamber and Dunn chamber chemotaxis assays, we demonstrate that NSCs in varying differentiation stages possess different migratory capacity. Furthermore, F-actin microfilament reorganization upon stimulation varies greatly among separate differentiation states. We show that signaling pathways involved in NSC migration, such as PI3K/Akt and mitogen-activated protein kinase (MAPK) (ERK1/2, JNK, and p38 MAPK) pathways, are differentially activated by SDF-1α among each NSC differentiation stages, and the extent to which these pathways participate in cell chemotaxis exhibits a differentiation stage-dependent manner. Taken together, these results suggest that the differentiation of NSCs influences their chemotactic responses to SDF-1α, providing new insight into the optimization of the therapeutic efficacy of NSCs for neural regeneration and nerve repair after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abair TD, Bulus N, Borza C, Sundaramoorthy M, Zent R, Pozzi A (2008) Functional analysis of the cytoplasmic domain of the integrin {alpha}1 subunit in endothelial cells. Blood 112(8):3242–3254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abranches E, Silva M, Pradier L (2009) Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS One 4(7):e6286

    Article  PubMed Central  PubMed  Google Scholar 

  • Ayuso-Sacido A, Moliterno JA, Kratovac S et al (2010) Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J Neurooncol 97(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Bao PH, Wang M, Su J, Liu MY, Zhang HX (2009) Tropism of bone marrow mesenchymal stem cells in neurogenic differentiation for C6 conditioned medium and SDF-1alpha. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 25(9):794–797, 801

    CAS  PubMed  Google Scholar 

  • Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26(12):3139–3149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23(1):83–93

    Article  PubMed  Google Scholar 

  • Bechara S, Wadman L, Popat KC (2011) Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation. Acta Biomater 7(7):2892–2901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE (2010) Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A 107(24):11068–11073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaubey S, Ridley AJ, Wells CM (2011) Using the Dunn chemotaxis chamber to analyze primary cell migration in real time. Methods Mol Biol 769:41–51

    Article  CAS  PubMed  Google Scholar 

  • Chiu CL, Digman MA, Gratton E (2013) Measuring actin flow in 3D cell protrusions. Biophys J 105(8):1746–1755

    Article  CAS  PubMed  Google Scholar 

  • Corti S, Locatelli F, Papadimitriou D et al (2005) Multipotentiality, homing properties, and pyramidal neurogenesis of CNS-derived LeX(ssea-1)+/CXCR4+ stem cells. FASEB J 19(13):1860–1862

    CAS  PubMed  Google Scholar 

  • Diaz-Coranguez M, Segovia J, Lopez-Ornelas A et al (2013) Transmigration of neural stem cells across the blood brain barrier induced by glioma cells. PLoS One 8(4):e60655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding J, Yu JZ, Li QY, Wang X, Lu CZ, Xiao BG (2009) Rho kinase inhibitor Fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived G-CSF. Brain Behav Immun 23(8):1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Ehtesham M, Yuan X, Kabos P et al (2004) Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 6(3):287–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esencay M, Sarfraz Y, Zagzag D (2013) CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1alpha. BMC Cancer 13(1):347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhler GM, Drayer AL, Olthof SG, Schuringa JJ, Coffer PJ, Vellenga E (2008) Reduced activation of protein kinase B, Rac, and F-actin polymerization contributes to an impairment of stromal cell derived factor-1 induced migration of CD34+ cells from patients with myelodysplasia. Blood 111(1):359–368

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Priebe W, Glod J, Banerjee D (2009) Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27(4):857–865

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36(2):234–248

    Article  CAS  PubMed  Google Scholar 

  • Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U (2007) Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem 282(51):37232–37243

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27(8):2032–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hattiangady B, Shetty AK (2012) Neural stem cell grafting counteracts hippocampal injury-mediated impairments in mood, memory, and neurogenesis. Stem Cells Transl Med 1(9):696–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi T, Iwai M, Ikeda T et al (2005) Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res 1038(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Honeth G, Staflin K, Kalliomaki S, Lindvall M, Kjellman C (2006) Chemokine-directed migration of tumor-inhibitory neural progenitor cells towards an intracranially growing glioma. Exp Cell Res 312(8):1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Imitola J, Comabella M, Chandraker AK et al (2004a) Neural stem/progenitor cells express costimulatory molecules that are differentially regulated by inflammatory and apoptotic stimuli. Am J Pathol 164(5):1615–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imitola J, Raddassi K, Park KI et al (2004b) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingraham CA, Park GC, Makarenkova HP, Crossin KL (2011) Matrix metalloproteinase (MMP)-9 induced by Wnt signaling increases the proliferation and migration of embryonic neural stem cells at low O2 levels. J Biol Chem 286(20):17649–17657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iqbal AJ, Regan-Komito D, Christou I et al (2013) A real time chemotaxis assay unveils unique migratory profiles amongst different primary murine macrophages. PLoS One 8(3):e58744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janowski M, Lukomska B, Domanska-Janik K (2011) Migratory capabilities of human umbilical cord blood-derived neural stem cells (HUCB-NSC) in vitro. Acta Neurobiol Exp (Wars) 71(1):24–35

    Google Scholar 

  • Jiang Z, Zhou W, Guan S, Wang J, Liang Y (2013) Contribution of SDF-1alpha/CXCR4 signaling to brain development and glioma progression. Neurosignals 21(3–4):240–258

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Ray RM, Johnson LR (2006) Rac1 mediates intestinal epithelial cell apoptosis via JNK. Am J Physiol Gastrointest Liver Physiol 291(6):G1137–G1147

    Article  CAS  PubMed  Google Scholar 

  • Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ (2012) PPARgamma agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One 7(11):e50500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SU (2004) Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24(3):159–171

    Article  PubMed  Google Scholar 

  • Kitchens DL, Snyder EY, Gottlieb DI (1994) FGF and EGF are mitogens for immortalized neural progenitors. J Neurobiol 25(7):797–807

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowska A, Kijewska M, Lipko M, Hibner U, Kaminska B (2011) Downregulation of Akt and FAK phosphorylation reduces invasion of glioblastoma cells by impairment of MT1-MMP shuttling to lamellipodia and downregulates MMPs expression. Biochim Biophys Acta 1813(5):655–667

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48(8):513–523

    Article  CAS  PubMed  Google Scholar 

  • Li S, Deng L, Gong L, Bian H, Dai Y, Wang Y (2010) Upregulation of CXCR4 favoring neural-like cells migration via AKT activation. Neurosci Res 67(4):293–299

    Article  CAS  PubMed  Google Scholar 

  • Li M, Tsang KS, Choi ST, Li K, Shaw PC, Lau KF (2011a) Neuronal differentiation of C17.2 neural stem cells induced by a natural flavonoid, baicalin. Chembiochem 12(3):449–456

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Michaud M, Canosa S, Kuo A, Madri JA (2011b) GSK-3beta: a signaling pathway node modulating neural stem cell and endothelial cell interactions. Angiogenesis 14(2):173–185

    Article  CAS  PubMed  Google Scholar 

  • Liapi A, Pritchett J, Jones O, Fujii N, Parnavelas JG, Nadarajah B (2008) Stromal-derived factor 1 signalling regulates radial and tangential migration in the developing cerebral cortex. Dev Neurosci 30(1–3):117–131

    Article  CAS  PubMed  Google Scholar 

  • Lien SC, Usami S, Chien S, Chiu JJ (2006) Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cell Signal 18(8):1270–1278

    Article  CAS  PubMed  Google Scholar 

  • Lindberg U, Karlsson R, Lassing I, Schutt CE, Hoglund AS (2008) The microfilament system and malignancy. Semin Cancer Biol 18(1):2–11

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med 10(Suppl):S42–S50

    Article  PubMed  Google Scholar 

  • Liu L, Cundiff P, Abel G et al (2006) Extracellular signal-regulated kinase (ERK) 5 is necessary and sufficient to specify cortical neuronal fate. Proc Natl Acad Sci U S A 103(25):9697–9702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WG, Lu GQ, Li B, Chen SD (2007) Dopaminergic neuroprotection by neurturin-expressing c17.2 neural stem cells in a rat model of Parkinson’s disease. Parkinsonism Relat Disord 13(2):77–88

    Article  PubMed  Google Scholar 

  • Liu N, Tian J, Cheng J, Zhang J (2013) Directional migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the kidney area after acute kidney injury. J Cell Biochem 114(12):2677–2689

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist J, El Andaloussi-Lilja J, Svensson C, Gustafsson Dorfh H, Forsby A (2013) Optimisation of culture conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In Vitro 27(5):1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Mani N, Khaibullina A, Krum JM, Rosenstein JM (2010) Vascular endothelial growth factor enhances migration of astroglial cells in subventricular zone neurosphere cultures. J Neurosci Res 88(2):248–257

    Article  CAS  PubMed  Google Scholar 

  • Maric D, Fiorio Pla A, Chang YH, Barker JL (2007) Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J Neurosci 27(8):1836–1852

    Article  CAS  PubMed  Google Scholar 

  • Mazharian A (2012) Assessment of megakaryocyte migration and chemotaxis. Methods Mol Biol 788:275–288

    Article  CAS  PubMed  Google Scholar 

  • Miller RJ, Banisadr G, Bhattacharyya BJ (2008) CXCR4 signaling in the regulation of stem cell migration and development. J Neuroimmunol 198(1–2):31–38

    Article  CAS  PubMed  Google Scholar 

  • Mithal DS, Ren D, Miller RJ (2013) CXCR4 signaling regulates radial glial morphology and cell fate during embryonic spinal cord development. Glia 61(8):1288–1305

    Article  PubMed  Google Scholar 

  • Monypenny J, Zicha D, Higashida C, Oceguera-Yanez F, Narumiya S, Watanabe N (2009) Cdc42 and Rac family GTPases regulate mode and speed but not direction of primary fibroblast migration during platelet-derived growth factor-dependent chemotaxis. Mol Cell Biol 29(10):2730–2747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parent JM (2002) The role of seizure-induced neurogenesis in epileptogenesis and brain repair. Epilepsy Res 50(1–2):179–189

    Article  PubMed  Google Scholar 

  • Park JH, Lee SB, Lee KH, Ahn JY (2012) Nuclear Akt promotes neurite outgrowth in the early stage of neuritogenesis. BMB Rep 45(9):521–525

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Huang Y, Rose J et al (2004) Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J Neurosci Res 76(1):35–50

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Paul P, Lee S et al (2012) PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochem Biophys Res Commun 424(3):421–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu X, Ding S, Shi T (2012) From understanding the development landscape of the canonical fate-switch pair to constructing a dynamic landscape for two-step neural differentiation. PLoS One 7(12):e49271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawada J, Itakura A, Tanaka A, Furusaka T, Matsuda H (2000) Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Blood 95(6):2052–2058

    CAS  PubMed  Google Scholar 

  • Schultheiss C, Abe P, Hoffmann F et al (2013) CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus 23(12):1345–1358

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Hingtgen S, Kasmieh R et al (2008) Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci 28(17):4406–4413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soares S, Sotelo C (2004) Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin. Neuroscience 128(4):807–817

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254

    Article  CAS  PubMed  Google Scholar 

  • Tchoghandjian A, Baeza-Kallee N, Beclin C et al (2012) Cortical and subventricular zone glioblastoma-derived stem-like cells display different molecular profiles and differential in vitro and in vivo properties. Ann Surg Oncol 19(Suppl 3):S608–S619

    Article  PubMed  Google Scholar 

  • Tofighi R, Moors M, Bose R, Ibrahim WN, Ceccatelli S (2011) Neural stem cells for developmental neurotoxicity studies. Methods Mol Biol 758:67–80

    Article  CAS  PubMed  Google Scholar 

  • Tran PB, Ren D, Veldhouse TJ, Miller RJ (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76(1):20–34

    Article  CAS  PubMed  Google Scholar 

  • Trapp T, Kogler G, El-Khattouti A et al (2008) Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury. J Biol Chem 283(47):32244–32253

    Article  CAS  PubMed  Google Scholar 

  • Tung HH, Lee SL (2012) Neural transmembrane protease and endothelial Gs protein activation in cell contact-dependent signaling between neural stem/progenitor cells and brain endothelial cells. J Biol Chem 287(27):22497–22508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vergano-Vera E, Mendez-Gomez HR, Hurtado-Chong A, Cigudosa JC, Vicario-Abejon C (2009) Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience 162(1):39–54

    Article  CAS  PubMed  Google Scholar 

  • Wang TW, Zhang H, Gyetko MR, Parent JM (2011) Hepatocyte growth factor acts as a mitogen and chemoattractant for postnatal subventricular zone-olfactory bulb neurogenesis. Mol Cell Neurosci 48(1):38–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang TY, Forsythe JS, Nisbet DR, Parish CL (2012) Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds. Biomaterials 33(36):9188–9197

    Article  CAS  PubMed  Google Scholar 

  • Worlitzer MM, Bunk EC, Hemmer K, Schwamborn JC (2012) Anti-inflammatory treatment induced regenerative oligodendrogenesis in parkinsonian mice. Stem Cell Res Ther 3(4):33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SR, Cho SD, Ahn NS et al (2005) The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells. Mutat Res 579(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  • Yang XT, Bi YY, Feng DF (2011) From the vascular microenvironment to neurogenesis. Brain Res Bull 84(1):1–7

    Article  PubMed  Google Scholar 

  • Yin W, Ma L, Zhang J et al (2013) The migration of neural progenitor cell mediated by SDF-1 is NF-kappaB/HIF-1alpha dependent upon hypoxia. CNS Neurosci Ther 19(3):145–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Vutskits L, Pepper MS, Kiss JZ (2003) VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 163(6):1375–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117(Pt 1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu G, Wu Y, Sha H, Zhang P, Jia J (2011) BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules 16(12):10146–10156

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Dai T, Zhou B et al (2008) SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis 201(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(Pt 4):769–775

    PubMed  Google Scholar 

  • Zychowicz M, Dziedzicka D, Mehn D et al (2014) Developmental stage dependent neural stem cells sensitivity to methylmercury chloride on different biofunctional surfaces. Toxicol In Vitro 28(1):76–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Evan Snyder for providing the C17.2 cell line. This work was supported by the National Natural Science Foundation of China (Nos. 31371407 and 31071220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Wei, Y., Liu, J. et al. Chemotactic Responses of Neural Stem Cells to SDF-1α Correlate Closely with Their Differentiation Status. J Mol Neurosci 54, 219–233 (2014). https://doi.org/10.1007/s12031-014-0279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0279-6

Keywords

Navigation