Skip to main content
Log in

Photoaffinity Labeling of Nicotinic Receptors: Diversity of Drug Binding Sites!

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

For almost 30 years, photoaffinity labeling and protein microsequencing techniques have been providing novel insights about the structure of nicotinic acetylcholine receptors (nAChR) and the diversity of nAChR drug binding sites. Photoaffinity labeling allows direct identification of amino acid residues contributing to a drug binding site without prior knowledge of the location of the binding site within the nAChR or the orientation of the ligand within the binding site. It also distinguishes amino acids that contribute to allosteric binding sites from those involved in allosteric modulation of gating. While photoaffinity labeling was used initially to identify amino acids contributing to the agonist binding sites and the ion channel, it has been used recently to identify binding sites for allosteric modulators at subunit interfaces in the extracellular and the transmembrane domains, and within a subunit's transmembrane helix bundle. In this article, we review the different types of photoaffinity probes that have been used and the various binding sites that have been identified within the structure of nAChR, with emphasis on our recent studies of allosteric modulator binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arevalo E, Chiara DC, Forman SA, Cohen JB, Miller KW (2005) Gating-enhanced accessibility of hydrophobic sites within the transmembrane region of the nicotinic acetylcholine receptor's delta-subunit–a time-resolved photolabeling study. J Biol Chem 280:13631–13640

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JE, Corringer PJ (2011) 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 60:116–125

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Rev 47:71–95

    Article  CAS  PubMed  Google Scholar 

  • Blanton MP, Cohen JB (1994) Identifying the lipid–protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33:2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Blanton MP, Xie Y, Dangott LJ, Cohen JB (1999) The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid–protein interface. Mol Pharmacol 55:269–278

    CAS  PubMed  Google Scholar 

  • Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux J-P, Delarue M, Corringer P-J (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114

    Article  CAS  PubMed  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  CAS  PubMed  Google Scholar 

  • Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514

    Article  CAS  PubMed  Google Scholar 

  • Changeux J-P (2012) The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J Biol Chem 287:40207–40215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZW, Manion B, Townsend RR, Reichert DE, Covey DF, Steinbach JH, Sieghart W, Fuchs K, Evers AS (2012) Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABA(A) receptor. Mol Pharmacol 82:408–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiara DC, Cohen JB (1997) Identification of amino acids contributing to high and low affinity d-tubocurarine sites in the Torpedo nicotinic acetylcholine receptor. J Biol Chem 272:32940–32950

    Article  CAS  PubMed  Google Scholar 

  • Chiara DC, Trinidad JC, Wang D, Ziebell MR, Sullivan D, Cohen JB (2003) Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist. Biochemistry 42:271–283

    Article  CAS  PubMed  Google Scholar 

  • Chiara, D. C., Hamouda, A. K., Ziebell, M., Mejia, L., Garcia, G., and Cohen, J. B. (2009) [3H]Chlorpromazine photolabeling of the Torpedo nicotinic acetylcholine receptor identifies two state-dependent binding sites in the ion channel. Biochemistry 48:10066–10077.

    Google Scholar 

  • Chiara DC, Dostalova Z, Jayakar SS, Zhou X, Miller KW, Cohen JB (2012) Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [3H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry 51:836–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clément M, Martin SS, Beaulieu ME, Chamberland C, Lavigne P, Leduc R, Guillemette G, Escher E (2005) Determining the environment of the ligand binding pocket of the human angiotensin II type I (hAT1) receptor using the methionine proximity assay. J Biol Chem 280:27121–27129

    Article  PubMed  Google Scholar 

  • daCosta CJB, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2002) Lipid–protein interactions at the nicotinic acetylcholine receptor: a functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 277:201–208

    Article  CAS  PubMed  Google Scholar 

  • daCosta CJ, Free CR, Corradi J, Bouzat C, Sine SM (2011) Single-channel and structural foundations of neuronal α7 acetylcholine receptor potentiation. J Neurosci 31:13870–13879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das J (2011) Aliphatic diazirine as photoaffinity probes for proteins: recent developments. Chem Rev 111:4405–4417

    Article  CAS  PubMed  Google Scholar 

  • Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, Chang JY, Lazure C, Chrétien M, Changeux JP (1988) Amino acids of the Torpedo marmorata acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27:2346–2357

    Google Scholar 

  • Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–840

    Article  CAS  PubMed  Google Scholar 

  • Giraudat J, Dennis M, Heidmann T, Chang J-Y, Changeux J-P (1986) Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc Natl Acad Sci U S A 83:2719–2723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamouda AK, Chiara DC, Sauls D, Cohen JB, Blanton MP (2006) Cholesterol interacts with transmembrane alpha-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]Azicholesterol. Biochemistry 45:976–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamouda AK, Sanghvi M, Chiara DC, Cohen JB, Blanton MP (2007) Identifying the lipid–protein interface of the α4β2 neuronal nicotinic acetylcholine receptor: hydrophobic photolabeling studies with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. Biochemistry 46:13837–13846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamouda AK, Chiara DC, Blanton MP, Cohen JB (2008) Probing the structure of affinity-purified and lipid-reconstituted Torpedo nicotinic acetylcholine receptor. Biochemistry 47:12787–12794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamouda AK, Stewart DS, Husain SS, Cohen JB (2011) Multiple transmembrane binding sites for p-trifluoromethyldiazirinyl-etomidate, a photoreactive Torpedo nicotinic acetylcholine receptor allosteric inhibitor. J Biol Chem 286:20466–20477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamouda AK, Kimm T, Cohen JB (2013) Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J Neurosci 33:485–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatanaka Y, Sadakane Y (2002) Photoaffinity labeling in drug discovery and development: chemical gateway for entering proteomic frontier. Curr Top Med Chem 2:271–288

    Article  CAS  PubMed  Google Scholar 

  • Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hilf RJC, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–379

    Article  CAS  PubMed  Google Scholar 

  • Jayakar SS, Dailey WP, Eckenhoff RG, Cohen JB (2013) Identification of propofol-binding sites in a nicotinic acetylcholine receptor with a photoreactive propofol analog. J Biol Chem 288:6178–6189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48:4705–4745

    Article  CAS  PubMed  Google Scholar 

  • Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. The FEBS Journal 274:3799–3845

    Article  CAS  PubMed  Google Scholar 

  • Kotzyba-Hibert F, Kapfer I, Goeldner M (1995) Recent trend in photoaffinity labeling. Angew Chem Int Ed Engl 34:1296–1312

    Article  CAS  Google Scholar 

  • Leite JF, Blanton MP, Shahgholi M, Dougherty DA, Lester HA (2003) Conformation-dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated photochemistry and mass spectrometry. Proc Natl Acad Sci U S A 100:13059–13059

    Google Scholar 

  • Li GD, Chiara DC, Sawyer GW, Husain SS, Olsen RW, Cohen JB (2006) Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 26:11599–11605

    Article  CAS  PubMed  Google Scholar 

  • Luttmann E, Ludwig J, Ho¨ffle-Maas A, Samochocki M, Maelicke A, Fels G (2009) Structural model for the binding sites of allosterically potentiating ligands on nicotinic acetylcholine receptors. ChemMedChem 4:1874–1882

    Article  CAS  PubMed  Google Scholar 

  • Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX (2000) Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer's disease. Behav Brain Res 113:199–206

    Article  CAS  PubMed  Google Scholar 

  • Middleton RE, Cohen JB (1991) Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]-nicotine as an agonist photoaffinity label. Biochemistry 30:6987–6997

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Ziebell MR, Chiara DC, Hong F, Cohen JB (2005) Photolabeling the Torpedo nicotinic acetylcholine receptor with 4-azido-2,3,5,6-tetrafluorobenzoylcholine, a partial agonist. Biochemistry 44:13447–13456

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Garcia GI, Chiara DC, Husain SS, Cohen JB (2008) Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. J Biol Chem 283:22051–22062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP (1990) The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci U S A 87:4675–4679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawyer GW, Chiara DC, Olsen RW, Cohen JB (2002) Identification of the bovine gamma-aminobutyric acid type A receptor alpha subunit residues photolabeled by the imidazobenzodiazepine [3H]Ro15-4513. J Biol Chem 277:50036–50045

    Article  CAS  PubMed  Google Scholar 

  • Schrattenholz A, Godovac-Zimmermann J, Schäfer HJ, Albuquerque EX, Maelicke A (1993) Photoaffinity labeling of Torpedo acetylcholine receptor by physostigmine. Eur J Biochem 216:671–677

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Henry JT, Lewis AH, Wang N, Levandoski MM (2009) The positive allosteric modulator morantel binds at noncanonical subunit interfaces of neuronal nicotinic acetylcholine receptors. J Neurosci 29:8734–8742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sobel A, Weber M, Changeux JP (1977) Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem 80:215–224

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Hamouda AK, Pandhare A, Duddempudi PK, Sanghvi M, Cohen JB, Blanton MP (2009) [3H]Epibatidine photolabels non-equivalent amino acids in the agonist binding sites of Torpedo and α4β2 nicotinic acetylcholine receptors. J Biol Chem 284:24939–34947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taly A, Corringer PJ, Guedin D, Lestage P, Changeux J-P (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733–750

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa M, Maltby D, Medzihradszky KF, Zhang N, Durkin KA, Presley J, Talley TT, Taylor P, Burlingame AL, Casida JE (2007) Defining nicotinic agonist binding surfaces through photoaffinity labeling. Biochemistry 46:8798–8806

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346:967–989

    Article  CAS  PubMed  Google Scholar 

  • Vodovozova EL (2007) Photoaffinity labeling and its application in structural biology. Biochemistry (Mosc) 72:1–20

    Article  CAS  Google Scholar 

  • Wang D, Chiara DC, Xie Y, Cohen JB (2000) Probing the structure of the nicotinic acetylcholine receptor with 4-benzoylbenzoylcholine, a novel photoaffinity competitive antagonist. J Biol Chem 275:28666–28674

    Article  CAS  PubMed  Google Scholar 

  • White BH, Cohen JB (1992) Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J Biol Chem 267:15770–15783

    CAS  PubMed  Google Scholar 

  • Whiting PJ, Lindstrom JM (1986) Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci USA 84:595–599

    Google Scholar 

  • Yamodo IH, Chiara DC, Cohen JB, Miller KW (2010) Conformational changes in the nicotinic acetylcholine receptor during gating and desensitization. Biochemistry 49:156–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman K Hamouda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamouda, A.K., Jayakar, S.S., Chiara, D.C. et al. Photoaffinity Labeling of Nicotinic Receptors: Diversity of Drug Binding Sites!. J Mol Neurosci 53, 480–486 (2014). https://doi.org/10.1007/s12031-013-0150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0150-1

Keywords

Navigation