Skip to main content

Advertisement

Log in

Evaluation of Six SNPs of MicroRNA Machinery Genes and Risk of Schizophrenia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that modulate the expression of approximately half of all human genes. Small changes in miRNA expression have been associated with several psychiatric and neurological disorders, but whether the polymorphisms in genes involved in the processing of miRNAs into maturity influence the susceptibility of a person to schizophrenia (SZ) has not yet been elucidated. In this study, we investigated the association between SZ risk and single-nucleotide polymorphisms (SNPs) in microRNA machinery genes. We assessed the associations between SZ as a risk and six potentially functional SNPs from five miRNA processing genes (DROSHA, DGCR8, DICER, AGO1, and GEMIN4) in a case-control study of 256 Chinese SZ patients and 252 frequency-matched (age, gender, and ethnicity) controls. All the SNPs (rs10719, rs3757, rs3742330, rs636832, rs7813, and rs3744741) were genotyped by high resolution melting method. We found that two SNPs in the DGCR8 and DICER gene were significantly associated with the altered SZ risk. The genotype or allele frequency of rs3742330 in DICER was significantly different in patients and controls. Moreover, the recessive model of rs3757 in DGCR8 (AA vs. GA/GG) exhibited a significantly increased risk with an odds ratio (OR) of 3.73 [95 % confidence interval (CI), 1.03–13.52, P = 0.032]; the dominant model of rs3742330 in DICER (AA vs. AG/GG) exhibited a significantly increased risk with OR of 1.49 (95 % CI, 1.04–2.13; P = 0.028). Other SNPs and the haplotype of GEMIN4 (rs3744741 and rs7813) did not show any association with SZ. Our results suggested that the specific genetic variants in microRNA machinery genes may affect SZ susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15:1176–1189

    Article  PubMed  CAS  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  CAS  Google Scholar 

  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    Article  PubMed  CAS  Google Scholar 

  • Clague J, Lippman SM, Yang H et al (2010) Genetic variation in microRNA genes and risk of oral premalignant lesions. Mol Carcinog 49:183–189

    PubMed  CAS  Google Scholar 

  • Davis TH, Cuellar TL, Koch SM et al (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330

    Article  PubMed  CAS  Google Scholar 

  • Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749

    Article  PubMed  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Olsen L, Lindow M et al (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2:e873

    Article  PubMed  Google Scholar 

  • Horikawa Y, Wood CG, Yang H et al (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 14:7956–7962

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Choi YY, Jin G et al (2010) Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study. Mol Carcinog 49:913–921

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X (2010) Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis 31:1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Miller BH, Wahlestedt C (2010) MicroRNA dysregulation in psychiatric disease. Brain Res 1338:89–99

    Article  PubMed  CAS  Google Scholar 

  • Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180–187

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, O'Carroll D, Tan CL et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Sethupathy P, Collins FS (2008) MicroRNA target site polymorphisms and human disease. Trends Genet 24:489–497

    Article  PubMed  CAS  Google Scholar 

  • Stark KL, Xu B, Bagchi A et al (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40:751–760

    Article  PubMed  CAS  Google Scholar 

  • Tabares-Seisdedos R, Rubenstein JL (2009) Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 14:563–589

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Dai M, Xuan W et al (2006) SNP Function Portal: a web database for exploring the function implication of SNP alleles. Bioinformatics 22(14):e523–e529

    Article  PubMed  CAS  Google Scholar 

  • Wayman GA, Davare M, Ando H et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105:9093–9098

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Karayiorgou M, Gogos JA (2010) MicroRNAs in psychiatric and neurodevelopmental disorders. Brain Res 1338:78–88

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68:2530–2537

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Wang KK, Gu J et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res 1:460–469

    Article  CAS  Google Scholar 

  • Zhu Y, Kalbfleisch T, Brennan MD et al (2009) A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr Res 109:86–89

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from National Natural Science Foundation of China (grant number 81101326).

Conflict of Interest

The authors declared that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binwu Ying or Lanlan Wang.

Additional information

Yi Zhou and Jun Wang have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Wang, J., Lu, X. et al. Evaluation of Six SNPs of MicroRNA Machinery Genes and Risk of Schizophrenia. J Mol Neurosci 49, 594–599 (2013). https://doi.org/10.1007/s12031-012-9887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9887-1

Keywords

Navigation