Skip to main content

Advertisement

Log in

Transcriptional and Translational Plasticity in Rodent Urinary Bladder TRP Channels with Urinary Bladder Inflammation, Bladder Dysfunction, or Postnatal Maturation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

These studies examined the transcriptional and translational plasticity of three transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) with established neuronal and non-neuronal expression and functional roles in the lower urinary tract. Mechanosensor and nociceptor roles in either physiological or pathological lower urinary tract states have been suggested for TRPA1, TRPV1, and TRPV4. We have previously demonstrated the neurochemical, organizational, and functional plasticity in micturition reflex pathways following induction of urinary bladder inflammation using the antineoplastic agent, cyclophosphamide. More recently, we have characterized similar plasticity in micturition reflex pathways in a transgenic mouse model with chronic urothelial overexpression (OE) of nerve growth factor (NGF) and in a transgenic mouse model with deletion of vasoactive intestinal polypeptide (VIP). In addition, the micturition reflex undergoes postnatal maturation that may also reflect plasticity in urinary bladder TRP channel expression. Thus, we examined plasticity in urinary bladder TRP channel expression in diverse contexts using a combination of quantitative, real-time PCR and western blotting approaches. We demonstrate transcriptional and translational plasticity of urinary bladder TRPA1, TRPV1, and TRVP4 expression. Although the functional significance of urinary bladder TRP channel plasticity awaits further investigation, these studies demonstrate context- (inflammation, postnatal development, NGF-OE, VIP deletion) and tissue-dependent (urothelium + suburothelium, detrusor) plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, Delgado M et al (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124:961–971

    Article  PubMed  CAS  Google Scholar 

  • Andersson KE, Gratzke C, Hedlund P (2010) The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int 106:1114–1127

    Article  PubMed  CAS  Google Scholar 

  • Andrade EL, Ferreira J, Andre E, Calixto JB (2006) Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem Pharmacol 72:104–114

    Article  PubMed  CAS  Google Scholar 

  • Angelico P, Testa R (2010) TRPV4 as a target for bladder overactivity. F1000 Biol Rep 2:12

    PubMed  Google Scholar 

  • Araki I (2011) TRP channels in urinary bladder mechanosensation. Adv Exp Med Biol 704:861–879

    Article  PubMed  CAS  Google Scholar 

  • Arms L, Girard BM, Vizzard MA (2010) Expression and function of CXCL12/CXCR4 in rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 298:F589–F600

    Article  PubMed  CAS  Google Scholar 

  • Bik W, Wolinska-Witort E, Chmielowska M, Baranowska-Bik A, Rusiecka-Kuczalek E, Baranowska B (2004) Vasoactive intestinal peptide can modulate immune and endocrine responses during lipopolysaccharide-induced acute inflammation. Neuroimmunomodulation 11:358–364

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ et al (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    Article  PubMed  CAS  Google Scholar 

  • Birder L, Kullmann FA, Lee H, Barrick S, de Groat W, Kanai A, Caterina M (2007) Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323:227–235

    Article  PubMed  CAS  Google Scholar 

  • Braas KM, May V, Zvara P, Nausch B, Kliment J, Dunleavy JD et al (2006) Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 290:R951–R962

    Article  PubMed  CAS  Google Scholar 

  • Capek K, Jelinek J (1956) The development of the control of water metabolism. I. The excretion of urine in young rats. Physiol Bohemoslov 5:91–96

    PubMed  CAS  Google Scholar 

  • Cheppudira BP, Girard BM, Malley SE, Schutz KC, May V, Vizzard MA (2008) Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F826–F836

    Article  PubMed  CAS  Google Scholar 

  • Chorny A, Gonzalez-Rey E, Varela N, Robledo G, Delgado M (2006) Signaling mechanisms of vasoactive intestinal peptide in inflammatory conditions. Regul Pept 137:67–74

    Article  PubMed  CAS  Google Scholar 

  • Christianson JA, Bielefeldt K, Malin SA, Davis BM (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain 151:540–549

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Jung SJ, Oh SB (2011) Role of TRP channels in pain sensation. Adv Exp Med Biol 704:615–636

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V et al (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285:R939–R949

    PubMed  CAS  Google Scholar 

  • Corrow KA, Vizzard MA (2007) Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 293:R125–R134

    Article  PubMed  CAS  Google Scholar 

  • Corrow K, Girard BM, Vizzard MA (2010) Expression and response of acid-sensing ion channels (ASICs) in urinary bladder to cyclophosphamide (CYP)-induced cystitis. Am J Physiol Renal Physiol 298:F1130–F1139

    Article  PubMed  CAS  Google Scholar 

  • de Groat WC, Araki I (1999) Maturation of bladder reflex pathways during postnatal development. Adv Exp Med Biol 462:253–263, discussion 311-220

    Article  PubMed  Google Scholar 

  • de Groat WC, Araki I, Vizzard MA, Yoshiyama M, Yoshimura N, Sugaya K et al (1998) Developmental and injury induced plasticity in the micturition reflex pathway. Behav Brain Res 92:127–140

    Article  PubMed  Google Scholar 

  • Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D (1999) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J Immunol 162:1707–1716

    PubMed  CAS  Google Scholar 

  • Delgado M, Gomariz RP, Martinez C, Abad C, Leceta J (2000) Anti-inflammatory properties of the type 1 and type 2 vasoactive intestinal peptide receptors: role in lethal endotoxic shock. Eur J Immunol 30:3236–3246

    Article  PubMed  CAS  Google Scholar 

  • Driscoll A, Teichman JMH (2001) How do patients with interstitial cystitis present? J Urol 166:2118–2120

    Article  PubMed  CAS  Google Scholar 

  • Du S, Araki I, Yoshiyama M, Nomura T, Takeda M (2007) Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 70:826–831

    Article  PubMed  Google Scholar 

  • Eid SR (2011) Therapeutic targeting of TRP channels—the TR(i)P to pain relief. Curr Top Med Chem 11:2118–2130

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom J, Ekman R, Hakanson R (1994) Ontogeny of neuropeptides in the rat urinary bladder. Regul Pept 50:23–28

    Article  PubMed  CAS  Google Scholar 

  • Erol K, Ulak G, Donmez T, Cingi MI, Alpan RS, Ozdemir M (1992) Effects of vasoactive intestinal polypeptide on isolated rat urinary bladder smooth muscle. Urol Int 49:151–153

    Article  PubMed  CAS  Google Scholar 

  • Everaerts W, Gevaert T, Nilius B, De Ridder D (2008) On the origin of bladder sensing: Tr(i)ps in urology. Neurourol Urodyn 27:264–273

    Article  PubMed  CAS  Google Scholar 

  • Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP et al (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107:19084–19089

    Article  PubMed  CAS  Google Scholar 

  • Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K et al (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117:3453–3462

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, May V, Bora SH, Fina F, Braas KM (2002) Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Pept 109:89–101

    Article  PubMed  CAS  Google Scholar 

  • Girard BA, Lelievre V, Braas KM, Razinia T, Vizzard MA, Ioffe Y et al (2006) Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem 99:499–513

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36:310–320

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Malley SE, Braas KM, May V, Vizzard MA (2010) PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 42:378–389

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Malley SE, Vizzard MA (2011) Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium. Am J Physiol Renal Physiol 300:F345–F355

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Rey E, Delgado M (2006) Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology 131:1799–1811

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M, Barahona MV, Recio P, Benedito S, Martinez AC, Rivera L et al (2006) Neuronal and smooth muscle receptors involved in the PACAP- and VIP-induced relaxations of the pig urinary bladder neck. Br J Pharmacol 149:100–109

    Article  PubMed  CAS  Google Scholar 

  • Hu VY, Malley S, Dattilio A, Folsom JB, Zvara P, Vizzard MA (2003) COX-2 and prostanoid expression in micturition pathways after cyclophosphamide-induced cystitis in the rat. Am J Physiol Regul Integr 284:R574–R585

    CAS  Google Scholar 

  • Igawa Y, Persson K, Andersson KE, Uvelius B, Mattiasson A (1993) Facilitatory effect of vasoactive intestinal polypeptide on spinal and peripheral micturition reflex pathways in conscious rats with and without detrusor instability. J Urol 149:884–889

    PubMed  CAS  Google Scholar 

  • Iuchi H, Satoh Y, Ono K (1994) Postnatal development of neuropeptide Y- and calcitonin gene-related peptide-immunoreactive nerves in the rat urinary bladder. Anat Embryol (Berl) 189:361–373

    Article  CAS  Google Scholar 

  • Janssen DA, Hoenderop JG, Jansen KC, Kemp AW, Heesakkers JP, Schalken JA (2011) The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: a morphological study. J Urol 186:1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Jensen DG, Studeny S, May V, Waschek J, Vizzard MA (2008) Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP(−/−) mice with cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36(1–3):299–309

    Article  PubMed  CAS  Google Scholar 

  • Juarranz Y, Abad C, Martinez C, Arranz A, Gutierrez-Canas I, Rosignoli F et al (2005) Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther 7:R1034–R1045

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Park EY, Hong SH, Seo SI, Park YH, Hwang TK (2005) Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int J Urol 12:875–880

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Park EY, Seo SI, Park YH, Hwang TK (2006) Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J Urol 175:1773–1776, discussion 1776

    Article  PubMed  CAS  Google Scholar 

  • Klinger MB, Vizzard MA (2008) Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F1778–F1789

    Article  PubMed  CAS  Google Scholar 

  • Klinger MB, Girard B, Vizzard MA (2008) p75(NTR) expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide-induced cystitis. J Comp Neurol 507:1379–1392

    Article  PubMed  CAS  Google Scholar 

  • Kullmann FA, Shah MA, Birder LA, de Groat WC (2009) Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am J Physiol Renal Physiol 296:F892–F901

    Article  PubMed  CAS  Google Scholar 

  • LaBerge J, Malley SE, Zvarova K, Vizzard MA (2006) Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 291:R692–R703

    Article  PubMed  CAS  Google Scholar 

  • Lecci A, Maggi CA (2005) Overactive urinary bladder: targeting sensory pathways. Drug Discov Today 2:15–23

    Article  CAS  Google Scholar 

  • Liu HT, Kuo HC (2008a) Urinary nerve growth factor levels are increased in patients with bladder outlet obstruction with overactive bladder symptoms and reduced after successful medical treatment. Urology 72:104–108

    Article  PubMed  Google Scholar 

  • Liu HT, Kuo HC (2008b) Urinary nerve growth factor level could be a potential biomarker for diagnosis of overactive bladder. J Urol 179:2270–2274

    Article  PubMed  Google Scholar 

  • Lowe EM, Anand P, Terenghi G, Willimans-Chestnut RE, Sinicropi DV (1997) Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol 79:572–577

    Article  PubMed  CAS  Google Scholar 

  • Malin S, Molliver D, Christianson JA, Schwartz ES, Cornuet P, Albers KM et al (2011) TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci 31:10516–10528

    Article  PubMed  CAS  Google Scholar 

  • Mandadi S, Armati PJ, Roufogalis BD (2011) Protein kinase C modulation of thermo-sensitive transient receptor potential channels: implications for pain signaling. J Nat Sci Biol Med 2:13–25

    Article  PubMed  CAS  Google Scholar 

  • Martinez C, Juarranz Y, Abad C, Arranz A, Miguel BG, Rosignoli F et al (2005) Analysis of the role of the PAC1 receptor in neutrophil recruitment, acute-phase response, and nitric oxide production in septic shock. J Leukoc Biol 77:729–738

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K et al (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620

    Article  PubMed  CAS  Google Scholar 

  • Newman R, Cuan N, Hampartzoumian T, Connor SJ, Lloyd AR, Grimm MC (2005) Vasoactive intestinal peptide impairs leucocyte migration but fails to modify experimental murine colitis. Clin Exp Immunol 139:411–420

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  • Ochodnicky P, Cruz CD, Yoshimura N, Michel MC (2011) Nerve growth factor in bladder dysfunction: contributing factor, biomarker, and therapeutic target. Neurourol Urodyn 30:1227–1241

    PubMed  CAS  Google Scholar 

  • Okragly AJ, Niles AL, Saban R, Schmidt D, Hoffman RL, Warner TF et al (1999) Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J Urol 161:438–442

    Article  PubMed  CAS  Google Scholar 

  • Olsen SM, Stover JD, Nagatomi J (2011) Examining the role of mechanosensitive ion channels in pressure mechanotransduction in rat bladder urothelial cells. Ann Biomed Eng 39:688–697

    Article  PubMed  Google Scholar 

  • Said SI (1991) Vasoactive intestinal polypeptide (VIP) in asthma. Ann N Y Acad Sci 629:305–318

    Article  PubMed  CAS  Google Scholar 

  • Sann H, Walb G, Pierau FK (1997) Postnatal development of the autonomic and sensory innervation of the musculature in the rat urinary bladder. Neurosci Lett 236:29–32

    Article  PubMed  CAS  Google Scholar 

  • Schnegelsberg B, Sun TT, Cain G, Bhattacharya A, Nunn PA, Ford AP et al (2010) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol 298:R534–R547

    Article  PubMed  CAS  Google Scholar 

  • Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S et al (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–399

    Article  PubMed  CAS  Google Scholar 

  • Studeny S, Cheppudira BP, Meyers S, Balestreire EM, Apodaca G, Birder LA et al (2008) Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)−/− mice. J Mol Neurosci 36:175–187

    Article  PubMed  CAS  Google Scholar 

  • Szema AM, Hamidi SA, Lyubsky S, Dickman KG, Mathew S, Abdel-Razek T (2006) Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J Physiol Lung Cell Mol Physiol 291:L880–L886

    Article  PubMed  CAS  Google Scholar 

  • Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP et al (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1 -piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–442

    Article  PubMed  CAS  Google Scholar 

  • Uckert S, Stief CG, Lietz B, Burmester M, Jonas U, Machtens SA (2002) Possible role of bioactive peptides in the regulation of human detrusor smooth muscle—functional effects in vitro and immunohistochemical presence. World J Urolj 20:244–249

    Google Scholar 

  • Vergnolle N, Cenac N, Altier C, Cellars L, Chapman K, Zamponi GW et al (2010) A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br J Pharmacol 159:1161–1173

    Article  PubMed  CAS  Google Scholar 

  • Vizzard MA (2000a) Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 161:273–284

    Article  PubMed  CAS  Google Scholar 

  • Vizzard MA (2000b) Alterations in spinal Fos protein expression induced by bladder stimulation following cystitis. Am J Physiol 278:R1027–R1039

    CAS  Google Scholar 

  • Vizzard MA (2001) Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat 21:125–138

    Article  PubMed  CAS  Google Scholar 

  • Voice JK, Dorsam G, Chan RC, Grinninger C, Kong Y, Goetzl EJ (2002) Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regul Pept 109:199–208

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Gordon E, Lin Z, Lozinskaya IM, Chen Y, Thorneloe KS (2009) Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly-isolated, guinea-pig urothelial cells. Channels (Austin) 3:156–160

    Article  CAS  Google Scholar 

  • Yamada T, Ugawa S, Ueda T, Ishida Y, Kajita K, Shimada S (2009) Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J Histochem Cytochem 57:277–287

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Hill WG, Apodaca G, Zeidel ML (2010) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol 300:F49–F59

    Article  PubMed  Google Scholar 

  • Zvarova K, Murray E, Vizzard MA (2004) Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury. J Comp Neurol 475:590–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Debra Cockayne, Roche Palo Alto, and Dr. James Washek, University of California, LA, for the generous gift of NGF-OE mouse breeders and VIP−/− mouse breeders, respectively, used in the present study. The authors gratefully acknowledge the technical expertise and support provided by Susan Malley and the VT Cancer Center DNA Analysis Facility.

Grants

This work was funded by National Institutes of Health (NIH) grants DK051369 (MAV), DK060481 (MAV), and DK065989 (MAV). This publication was also supported by grants from the National Center for Research Resources (5 P30 RR 032135) and the National Institute of General Medical Sciences (8 P30 GM 103498) from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Vizzard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrill, L., Girard, B.M., May, V. et al. Transcriptional and Translational Plasticity in Rodent Urinary Bladder TRP Channels with Urinary Bladder Inflammation, Bladder Dysfunction, or Postnatal Maturation. J Mol Neurosci 48, 744–756 (2012). https://doi.org/10.1007/s12031-012-9867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9867-5

Keywords

Navigation