Skip to main content
Log in

Septin 4, the Drosophila Ortholog of Human CDCrel-1, Accumulates in parkin Mutant Brains and is Functionally Related to the Nedd4 E3 Ubiquitin Ligase

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Although most PD cases are sporadic, several loci have been involved in the disease. parkin (PARK) is causative of autosomal recessive juvenile Parkinsonism (ARJP) and encodes an E3 ubiquitin ligase associated with proteasomal degradation. It was proposed that loss of PARK function may lead to the toxic accumulation of its substrates in the brain, thus causing dopaminergic (DA) neuron death. Indeed, the first identified PARK substrate was CDCrel-1, a protein of the Septin family that accumulates in ARPJ brains. Drosophila has been used as a successful model organism to study PD broadly contributing to the understanding of the disease. Consistently, park mutant flies recapitulate some key features of ARJP patients. In this scenario, we previously reported that overexpression of Septin 4 (Sep4), the Drosophila ortholog of CDCrel-1, is toxic for DA neurons and interacts physically with Park, thus suggesting that Sep4 could be a Park substrate in Drosophila. Confirming this hypothesis, we show that Sep4 accumulates in park mutant brains as its human counterpart. Furthermore, we demonstrate that Nedd4, another E3 ubiquitin ligase that may have a role in PD, is functionally related to Sep4 and could be involved in regulating Sep4 subcellular localization/trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439

    Article  PubMed  CAS  Google Scholar 

  • Caltagarone J, Rhodes J, Honer WG, Bowser R (1998) Localization of a novel septin protein, hCDCrel-1, in neurons of human brain. Neuroreport 9:2907–2912

    Article  PubMed  CAS  Google Scholar 

  • Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102:10345–10350

    Article  PubMed  CAS  Google Scholar 

  • Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, Lim K, Chung KK, Kehoe K, D'Adamio L, Lee JM, Cochran E, Bowser R, Dawson TM, Wolozin B (2003) SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res 117:179–189

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Ferger B, Paterna JC, Vogel D, Furler S, Osinde M, Feldon J, Bueler H (2003) Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc Natl Acad Sci U S A 100:12438–12443

    Article  PubMed  CAS  Google Scholar 

  • Fares H, Peifer M, Pringle JR (1995) Localization and possible functions of Drosophila septins. Mol Biol Cell 6:1843–1859

    PubMed  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404:394–398

    Article  PubMed  CAS  Google Scholar 

  • Fernandes C, Rao Y (2011) Genome-wide screen for modifiers of Parkinson's disease genes in Drosophila. Mol Brain 4:17

    Article  PubMed  CAS  Google Scholar 

  • Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54:618–627

    Article  PubMed  CAS  Google Scholar 

  • Giordano E, Rendina R, Peluso I, Furia M (2002) RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160:637–648

    PubMed  CAS  Google Scholar 

  • Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100:4078–4083

    Article  PubMed  CAS  Google Scholar 

  • Ihara M, Yamasaki N, Hagiwara A, Tanigaki A, Kitano A, Hikawa R, Tomimoto H, Noda M, Takanashi M, Mori H, Hattori N, Miyakawa T, Kinoshita M (2007) Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron 53:519–533

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902

    Article  PubMed  CAS  Google Scholar 

  • Ing B, Shteiman-Kotler A, Castelli M, Henry P, Pak Y, Stewart B, Boulianne GL, Rotin D (2007) Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol Cell Biol 27:481–496

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  PubMed  CAS  Google Scholar 

  • Joo E, Tsang CW, Trimble WS (2005) Septins: traffic control at the cytokinesis intersection. Traffic 6:626–634

    Article  PubMed  CAS  Google Scholar 

  • Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8:407–412

    Article  PubMed  CAS  Google Scholar 

  • Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD (2006) Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Structure 14:543–553

    Article  PubMed  CAS  Google Scholar 

  • Kasanov J, Pirozzi G, Uveges AJ, Kay BK (2001) Characterizing class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Chem Biol 8:231–241

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson's disease. Lancet 373:2055–2066

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chaney S, Roberts IJ, Forte M, Hirsh J (2000) Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol 10:211–214

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Soriano V, Paricio N (2007) Overexpression of Septin 4, the Drosophila homologue of human CDCrel-1, is toxic for dopaminergic neurons. Eur J Neurosci 26:3150–3158

    Article  PubMed  Google Scholar 

  • Munoz-Soriano V, Paricio N (2011) Drosophila models of Parkinson's disease: discovering relevant pathways and novel therapeutic strategies. Parkinsons Dis 2011:520640

    PubMed  Google Scholar 

  • Myat A, Henry P, McCabe V, Flintoft L, Rotin D, Tear G (2002) Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Neuron 35:447–459

    Article  PubMed  CAS  Google Scholar 

  • Nakahira M, Macedo JN, Seraphim TV, Cavalcante N, Souza TA, Damalio JC, Reyes LF, Assmann EM, Alborghetti MR, Garratt RC, Araujo AP, Zanchin NI, Barbosa JA, Kobarg J (2010) A draft of the human septin interactome. PLoS One 5:e13799

    Article  PubMed  Google Scholar 

  • Pan F, Malmberg RL, Momany M (2007) Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol 7:103

    Article  PubMed  CAS  Google Scholar 

  • Park J, Kim Y, Chung J (2009) Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila. Dis Model Mech 2:336–340

    Article  PubMed  CAS  Google Scholar 

  • Peng XR, Jia Z, Zhang Y, Ware J, Trimble WS (2002) The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol Cell Biol 22:378–387

    Article  PubMed  CAS  Google Scholar 

  • Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, Harding M, Bellen H, Mardon G (2004) Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131:2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Riparbelli MG, Callaini G (2007) The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Dev Biol 303:108–120

    Article  PubMed  CAS  Google Scholar 

  • Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409

    Article  PubMed  CAS  Google Scholar 

  • Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Bueler H (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol Dis 40:82–92

    Article  PubMed  CAS  Google Scholar 

  • Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, Matsuno K, Hayashi S (2004) Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol 14:2228–2236

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB (2007) Mechanisms of neurodegeneration in idiopathic Parkinson's disease. Parkinsonism Relat Disord 13(Suppl 3):S306–S308

    Article  PubMed  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  • Son JH, Kawamata H, Yoo MS, Kim DJ, Lee YK, Kim S, Dawson TM, Zhang H, Sulzer D, Yang L, Beal MF, Degiorgio LA, Chun HS, Baker H, Peng C (2005) Neurotoxicity and behavioral deficits associated with Septin 5 accumulation in dopaminergic neurons. J Neurochem 94:1040–1053

    Article  PubMed  CAS  Google Scholar 

  • Stasyk T, Schiefermeier N, Skvortsov S, Zwierzina H, Peranen J, Bonn GK, Huber LA (2007) Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics. Mol Cell Proteomics 6:908–922

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na + channel deleted in Liddle's syndrome. EMBO J 15:2371–2380

    PubMed  CAS  Google Scholar 

  • Tofaris GK, Kim HT, Hourez R, Jung JW, Kim KP, Goldberg AL (2011) Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal–lysosomal pathway. Proc Natl Acad Sci U S A 108:17004–17009

    Article  PubMed  CAS  Google Scholar 

  • van Weering JR, Verkade P, Cullen PJ (2010) SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin Cell Dev Biol 21:371–380

    Article  PubMed  Google Scholar 

  • Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci U S A 102:8024–8029

    Article  PubMed  CAS  Google Scholar 

  • Wilkin MB, Carbery AM, Fostier M, Aslam H, Mazaleyrat SL, Higgs J, Myat A, Evans DA, Cornell M, Baron M (2004) Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr Biol 14:2237–2244

    Article  PubMed  CAS  Google Scholar 

  • Yagi M, Zieger B, Roth GJ, Ware J (1998) Structure and expression of the human septin gene HCDCREL-1. Gene 212:229–236

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 97:13354–13359

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Shtineman-Kotler A, Nguyen L, Iliadi KG, Boulianne GL, Rotin D (2011) A splice isoform of DNedd4, DNedd4-long, negatively regulates neuromuscular synaptogenesis and viability in Drosophila. PLoS One 6:e27007

    Article  PubMed  CAS  Google Scholar 

  • Zieger B, Tran H, Hainmann I, Wunderle D, Zgaga-Griesz A, Blaser S, Ware J (2000) Characterization and expression analysis of two human septin genes, PNUTL1 and PNUTL2. Gene 261:197–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Feany, S. Birman, G. Mardon, S. Hayashi, the Bloomington Stock Center, the Vienna Drosophila RNAi Center, and Exelisis Inc. for fly stocks. This work was supported by grants from the Generalitat Valenciana (ACOMP/2010/242 and PROMETEO/2010/081) to NP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Paricio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Soriano, V., Nieto-Arellano, R. & Paricio, N. Septin 4, the Drosophila Ortholog of Human CDCrel-1, Accumulates in parkin Mutant Brains and is Functionally Related to the Nedd4 E3 Ubiquitin Ligase. J Mol Neurosci 48, 136–143 (2012). https://doi.org/10.1007/s12031-012-9788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9788-3

Keywords

Navigation