Skip to main content

Advertisement

Log in

Vasoactive Intestinal Peptide Enhances Striatal Plasticity and Prevents Dopaminergic Cell Loss in Parkinsonian Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Destruction of the nigrostriatal dopaminergic pathway by the administration of 6-OHDA generates an animal model of Parkinson's disease. The main characteristic of this progressive neurological disorder is the loss of the dopaminergic neurons located in the substantia nigra pars compacta (SNc). Dopaminergic inputs from the SNc innervate the medium spiny neurons of the striatum and modulate the spontaneous activity of the primary output nuclei of the basal ganglia, globus pallidus interna, and substantia nigra pars reticulata. In our previous studies, we showed that systematically administered vasoactive intestinal peptide (VIP) is effective at reversing motor deficits, decreasing neuronal cell death, and repairing the myelin sheet in parkinsonian rats. In the current study, the effects of VIP on the dendritic morphology of the striatal neurons and the number of dopaminergic neurons in the SNc were examined in 6-OHDA-lesioned rats using Golgi-Cox staining and design-based stereological methods, respectively. Adult Sprague-Dawley rats were separated into sham-operated, bilaterally 6-OHDA lesioned and lesioned + i.p. VIP-injected (25 ng/kg) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection (every 2 days for 15 days). The 6-OHDA significantly decreased the total number of dopaminergic neurons, branching, and spine density of the medium spiny neurons in the striatum. VIP significantly increased the number of neurons immunostained with tyrosine hydroxylase and the density of spines without altering the branching and the total length of dendrites. In conclusion, VIP might display synaptogenetic activity by enhancing the spine density in the striatum of the parkinsonian rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baquet ZC, Williams D, Brody J, Smeyne RJ (2009) A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 161(4):1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Gross CE, Brotchie JM (2003) Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends Neurosci 26(4):215–221

    Article  PubMed  CAS  Google Scholar 

  • Brenneman DE (1988) Regulation of activity-linked neuronal survival by vasoactive intestinal peptide. Ann NY Acad Sci 527:595–597

    Article  Google Scholar 

  • Brenneman DE, Gozes I (1996) A femtomolar-acting neuroprotective peptide. J Clin Invest 97(10):2299–2307

    Article  PubMed  CAS  Google Scholar 

  • Brown DR (2000) Neuronal release of vasoactive intestinal peptide is important to astrocytic protection of neurons from glutamate toxicity. Mol Cell Neurosci 15:465–475

    Article  PubMed  CAS  Google Scholar 

  • Casetta I, Govoni V, Granieri E (2005) Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm Design 11(16):2033–2052

    Article  CAS  Google Scholar 

  • Day M, Wang Z, Ding J et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9(2):251–259

    Article  PubMed  CAS  Google Scholar 

  • Dejda A, Sokołowska P, Nowak JZ (2005) Neuroprotective potential of three neuropeptides PACAP VIP and PHI. Pharmacol Rep 57(3):307–320

    PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003a) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson's disease by blocking microglial activation. FASEB J 17(3):944–953

    PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003b) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J 17:88–104

    Google Scholar 

  • Delgado M, Abad C, Martinez C et al (2002) Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune disease. J Mol Med 80:16–24

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY, Colbran RJ, Winder DJ (2007) Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism. Parkinsonism Relat Disord 13(3):251–258

    Article  Google Scholar 

  • Dogrukol-Ak D, Banks WA, Tuncel N, Tuncel M (2003) Passage of vasoactive intestinal peptide across the blood–brain barrier. Peptides 24:437–444

    Article  PubMed  CAS  Google Scholar 

  • Durieux PF, Schiffmann SN, de Kerchoved'Exaerde A (2011) Targeting neuronal populations of the striatum. Front Neuroanat 5:40

    Article  PubMed  CAS  Google Scholar 

  • Feyder M, Bonito-Oliva A, Fisone G (2011) l-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosc 5:71

    CAS  Google Scholar 

  • Garcia BG, Neely MD, Deutch AY (2010) Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss. Cereb Cortex 20(10):2423–2432

    Article  PubMed  Google Scholar 

  • Gomariz RP, Martinez C, Abad C, Leceta J, Delgado M (2001) Immunology of VIP: a review and therapeutical perspectives. Curr Pharm Des 7:89–111

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Varela N, Delgado M (2005) Vasoactive intestinal peptide family as a therapeutic target for Parkinson's disease. Expert Opin Ther Targets 9:923–929

    Article  PubMed  CAS  Google Scholar 

  • Gressens P (1999) VIP neuroprotection against excitotoxic lesions of the developing mouse brain. Ann NY Acad Sci 897:109–124

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Mervis RF, Politi J et al (1994) Blockade of VIP during neonatal development induces neuronal damage and increases VIP and VIP receptors in brain. Ann NY Acad Sci 31(739):211–225

    Article  Google Scholar 

  • Hill JM, Hauser JM, Sheppard LM et al (2007) Blockage of VIP during mouse embryogenesis modifies adult behavior and results in permanent changes in brain chemistry. J Mol Neurosci 31(3):183–200

    PubMed  CAS  Google Scholar 

  • Incerti M, Vink J, Roberson R, Benassou I, Abebe D, Spong CY (2010) Prevention of the alcohol-induced changes in brain-derived neurotrophic factor expression using neuroprotective peptides in a model of fetal alcohol syndrome. Am J Obstet Gynecol 202(5):457 e1–4

    Article  Google Scholar 

  • Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res 4 503(2):334–338

    Article  CAS  Google Scholar 

  • Jan YN, Jan LY (2003) The control of dendrite development. Neuron 40(2):229–242

    Article  PubMed  CAS  Google Scholar 

  • Joo KM, Chung YH, Kim MK et al (2004) Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476(4):388–413

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz OT, Tuncel N, Oncu EM et al (2010) Vasoactive intestinal peptide (VIP) treatment of parkinsonian rats increases thalamic gamma-aminobutyric acid (GABA) levels and alters the release of nerve growth factor (NGF) by mast cells. J Mol Neurosci 41(2):278–287

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A, Gaudin P, Maoret JJ, Rouyer-Fessard C, Nicole P (1996) Receptors for VIP, PACAP, secretin, GRF, glucagon, GLP-1, and other members of their new family of G protein-linked receptors: structure–function relationship with special reference to the human VIP-1 receptor. Ann NY AcadSci 26 805:94–109, discussion 110-111

    Article  CAS  Google Scholar 

  • Lerner TN, Kreitzer AC (2011) Neuromodulatory control of striatal plasticity and behavior. Curr Opin Neurobiol 21(2):322–327

    Article  PubMed  CAS  Google Scholar 

  • Liévens JC, Salin P, Had-Aissouni L, Mahy N, Kerkerian-Le GL (2000) Differential effects of corticostriatal and thalamostriatal deafferentation on expression of the glutamate transporter GLT1 in the rat striatum. J Neurochem 74(3):909–919

    Article  PubMed  Google Scholar 

  • Magarinos AM, Li CJ, Gal TJ et al (2011) Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21(3):253–264

    Article  PubMed  CAS  Google Scholar 

  • Murphy DD, Segal M (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci USA 18 94(4):1482–1487

    Article  CAS  Google Scholar 

  • Neely MD, Schmidt DE, Deutch AY (2007) Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience 149(2):457–464

    Article  PubMed  CAS  Google Scholar 

  • Nishijima I, Yamagata T, Spencer CM et al (2006) Secretin receptor-deficient mice exhibit impaired synaptic plasticity and social behavior. Hum Mol Genet 15(21):3241–3250

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto M, Miyakawa H, Wada K, Furuta A (2011) Activation of the VIP/VPAC2 system induces reactive astrocytosis associated with increased expression of glutamate transporters. Brain Res 6(1383):43–53

    Article  Google Scholar 

  • Offen D, Sherki Y, Melamed E et al (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease. Brain Res 854(1–2):257–262

    Article  PubMed  CAS  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366:580–599

    Article  PubMed  CAS  Google Scholar 

  • Passemard S, Sokolowska P, Schwendimann L, Gressens P (2011) VIP-induced neuroprotection of the developing brain. Curr Pharm Des 17(10):1036–1039

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic, New York

    Google Scholar 

  • Pellegri G, Magistretti PJ, Martin JL (1998) VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones. Eur J Neurosci 10(1):272–280

    Article  PubMed  CAS  Google Scholar 

  • Penrod RD, Kourrich S, Kearney E, Thomas MJ, Lanier LM (2011) An embryonic culture system for the investigation of striatal medium spiny neuron dendritic spine development and plasticity. J Neurosci Meth 30(200):1–13

    Article  Google Scholar 

  • Rangon CM, Dicou E, Goursaud S et al (2006) Mechanisms of VIP-induced neuroprotection against neonatal excitotoxicity. Ann NY Acad Sci 1070:512–517

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Tamás A, Lubics A, Szalontay L, Lengvári I (2004) Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regul Pept 123(1-3):85–94

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Dickman KG (2000) Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept 93:21–29

    Article  PubMed  CAS  Google Scholar 

  • Said SI, Berisha HI, Pakbaz H (1995) N-methyl-d-aspartate receptors outside the central nervous system: activation causes acute lung injury that is mediated by nitric oxide synthesis and prevented by vasoactive intestinal peptide. Neuroscience 65:943–946

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    PubMed  CAS  Google Scholar 

  • Smith Y, Villalba RM, Raju DV (2009) Striatal spine plasticity in Parkinson's disease: pathological or not? Parkinsonism Relat Disord 15(Suppl 3):156–161

    Article  Google Scholar 

  • Smith-Swintosky VL, Gozes I, Brenneman DE, D'Andrea MR, Plata-Salaman CR (2005) Activity-dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci 25(3):225–238

    Article  PubMed  CAS  Google Scholar 

  • Solis O, Limón DI, Flores-Hernández J, Flores G (2007) Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson's disease. Synapse 61(6):450–458

    Article  PubMed  CAS  Google Scholar 

  • Stephens B, Mueller AJ, Shering AF et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132(3):741–754

    Article  PubMed  CAS  Google Scholar 

  • Stranahan AM (2011) Physiological variability in brain-derived neurotrophic factor expression predicts dendritic spine density in the mouse dentate gyrus. Neurosci Lett 495(1):60–62

    Article  PubMed  CAS  Google Scholar 

  • Theriault E, Landis DM (1987) Morphology of striatal neurons containing VIP-like immunoreactivity. J Comp Neurol 256(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Tıkız H, Tuncel N, Gurer F, Baycu C (1991) Mast cell degranulation in hemorrhagic shock in rats and the effects of vasoactive intestinal peptide, aprotinin and H1 and H2-receptor blockers on degranulation. Pharmacolog 43:47–52

    Google Scholar 

  • Tuncel N, Tore F (1998) The effect of vasoactive intestinal peptide (VIP) inhibition of nitric oxide synthase on survival rate in rats exposed to endotoxin shock. Ann N Y Acad Sci 865:586–589

    Article  PubMed  CAS  Google Scholar 

  • Tuncel N, Basmak H, Uzuner K, Tuncel M, Altıokka G, Zaimoglu V et al (1996) Protection of rat retina from ischemia–reperfusion injury by vasoactive intestinal peptide (VIP): the effect of VIP on lipid peroxidation and antioxidant enzyme activity of retina and choroid. Ann N Y Acad Sci 805:489–498

    Article  PubMed  CAS  Google Scholar 

  • Tuncel N, Tore F, Sahinturk V (2000) Vasoactive intestinal peptide inhibits degranulation and changes granular content of mast cells: a potential therapeutic strategy in controlling septic shock. Peptides 21:81–89

    Article  PubMed  CAS  Google Scholar 

  • Tuncel N, Sener E, Cerit C et al (2005) Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson's disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 26(5):827–836

    Article  PubMed  CAS  Google Scholar 

  • Tuncel N, Korkmaz OT, Tekin N, Sener E, Akyüz F, Inal M (2012) Antioxidant and anti-apoptotic activity of vasoactive intestinal peptide (VIP) against 6-hydroxy dopamine toxicity in the rat corpus striatum. J Mol Neurosci 46(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Villalba RM, Smith Y (2010) Striatal spine plasticity in Parkinson's disease. Front Neuroanat 10(4):133

    Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • Zaja-Milatovic S, Milatovic D, Schantz AM et al (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64(3):545–547

    Article  PubMed  CAS  Google Scholar 

  • Zhang QL, Liu J, Lin PX, Webster HD (2002) Local administration of vasoactive intestinal peptide after nerve transection accelerates early myelination and growth of regenerating axons. J Peripher Nerv Syst 7:118–127

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neşe Tunçel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkmaz, O., Ay, H., Ulupınar, E. et al. Vasoactive Intestinal Peptide Enhances Striatal Plasticity and Prevents Dopaminergic Cell Loss in Parkinsonian Rats. J Mol Neurosci 48, 565–573 (2012). https://doi.org/10.1007/s12031-012-9781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9781-x

Keywords

Navigation