Skip to main content
Log in

Influence of Cholesterol on Cellular Signaling and Fusion Pore Kinetics

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cholesterol is an important lipid component of cellular membranes. Recent studies have shown that changes in cellular cholesterol level can affect cellular functions. Here, we summarize our recent findings on the impact of cholesterol on the glucose-stimulated Ca2+ signaling in rat pancreatic β cells and the fusion pore kinetics of large dense core granules in rat chromaffin cells. In mouse pancreatic β cells, pharmacological elevation of cellular cholesterol (but not cholesterol extraction) reduced the current density of the delayed rectifier K+ channels, the ATP-dependent K+ channels, and voltage-gated Ca2+ channels. Importantly, cholesterol enrichment impaired glucose-stimulated Ca2+ signaling in mouse pancreatic β cells via a suppression of voltage-gated Ca2+ channels and a decrease in mitochondrial ATP production, which in turn led to a reduction in the glucose-evoked depolarization. In rat chromaffin cells, we found that the persistence of the semi-stable fusion pore was increased by cholesterol enrichment, and acute cholesterol extraction from the cytosolic side of the cell destabilized the semi-stable fusion pore. Overall, our findings highlight the importance of cholesterol in the regulation of cellular signaling and exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albillos A, Dernick G, Horstmann H, Almers W, de Toledo Alvarez G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:509–512

    Article  PubMed  CAS  Google Scholar 

  • Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Guille M (2003) Dynamics of full fusion during vesicular exocytotic events: release of adrenaline by chromaffin cells. Chemphyschem 4:147–154

    Article  PubMed  CAS  Google Scholar 

  • Bowles DK, Heaps CL, Turk JR, Maddali KK, Price EM (2004) Hypercholesterolemia inhibits L-type calcium current in coronary macro-, not microcirculation. J Appl Physiol 96:2240–2248

    Article  PubMed  CAS  Google Scholar 

  • Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ, Vasanji Z, Marsh BJ, Rodrigues B, Johnson JD, Parks JS, Verchere CB, Hayden MR (2007) Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med 13:340–347

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Rand RP (1997) The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J 73:267–276

    Article  PubMed  CAS  Google Scholar 

  • Churchward MA, Coorssen JR (2009) Cholesterol, regulated exocytosis and the physiological fusion machine. Biochem J 423:1–14

    Article  PubMed  CAS  Google Scholar 

  • Churchward MA, Rogasevskaia T, Hofgen J, Bau J, Coorssen JR (2005) Cholesterol facilitates the native mechanism of Ca2 + -triggered membrane fusion. J Cell Sci 118:4833–4848

    Article  PubMed  CAS  Google Scholar 

  • Churchward MA, Rogasevskaia T, Brandman DM, Khosravani H, Nava P, Atkinson JK, Coorssen JR (2008) Specific lipids supply critical negative spontaneous curvature—an essential component of native Ca2+-triggered membrane fusion. Biophys J 94:3976–3986

    Article  PubMed  CAS  Google Scholar 

  • Davies A, Douglas L, Hendrich J, Wratten J, Tran VM, Foucault I, Koch D, Pratt WS, Saibil HR, Dolphin AC (2006) The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function. J Neurosci 26:8748–8757

    Article  PubMed  CAS  Google Scholar 

  • Del Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, Torri S, Pollera M, Boggi U, Mosca F, Del Prato S, Marchetti P (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54:727–735

    Article  PubMed  Google Scholar 

  • Epshtein Y, Chopra AP, Rosenhouse-Dantsker A, Kowalsky GB, Logothetis DE, Levitan I (2009) Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc Natl Acad Sci U S A 106:8055–8060

    Article  PubMed  CAS  Google Scholar 

  • Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW (2007) Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 56:2328–2338

    Article  PubMed  CAS  Google Scholar 

  • Heaps CL, Tharp DL, Bowles DK (2005) Hypercholesterolemia abolishes voltage-dependent K+ channel contribution to adenosine-mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol 288:H568–H576

    Article  PubMed  CAS  Google Scholar 

  • Lang T (2007) SNARE proteins and 'membrane rafts'. J Physiol 585:693–698

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213

    Article  PubMed  CAS  Google Scholar 

  • Lange Y, Steck TL, Ye J, Lanier MH, Molugu V, Ory D (2009) Regulation of fibroblast mitochondrial 27-hydroxycholesterol production by active plasma membrane cholesterol. J Lipid Res 50:1881–1888

    Article  PubMed  CAS  Google Scholar 

  • Lee AK, Yeung-Yam-Wah V, Tse FW, Tse A (2011) Cholesterol elevation impairs glucose-stimulated Ca2+ signaling in mouse pancreatic {beta}-cells. Endocrinology 152:3351–3361

    Article  PubMed  CAS  Google Scholar 

  • Levitan I (2009) Cholesterol and Kir channels. IUBMB Life 61:781–790

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  • Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  PubMed  CAS  Google Scholar 

  • Needham D, Nunn RS (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J 58:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–1321

    Article  PubMed  CAS  Google Scholar 

  • Razinkov VI, Cohen FS (2000) Sterols and sphingolipids strongly affect the growth of fusion pores induced by the hemagglutinin of influenza virus. Biochemistry 39:13462–13468

    Article  PubMed  CAS  Google Scholar 

  • Razinkov VI, Melikyan GB, Epand RM, Epand RF, Cohen FS (1998) Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores. J Gen Physiol 112:409–422

    Article  PubMed  CAS  Google Scholar 

  • Reimer MK, Ahren B (2002) Altered beta-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Diabetes 51(Suppl 1):S138–S143

    Article  PubMed  CAS  Google Scholar 

  • Sturek JM, Castle JD, Trace AP, Page LC, Castle AM, Evans-Molina C, Parks JS, Mirmira RG, Hedrick CC (2010) An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J Clin Invest 120(7):2575–2589

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Hatakeyama H, Okado H, Miwa A, Kishimoto T, Kojima T, Abe T, Kasai H (2004) Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J Cell Biol 165:255–262

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, Hosaka M, Moriguchi T, Zhang S, Suda M, Yokota-Hashimoto H, Shinozuka K, Takeuchi T (2010) Cholesterol biosynthesis pathway intermediates and inhibitors regulate glucose-stimulated insulin secretion and secretory granule formation in pancreatic beta-cells. Endocrinology 151:4705–4716

    Article  PubMed  CAS  Google Scholar 

  • Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R (2007) Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 27:4737–4746

    Article  PubMed  CAS  Google Scholar 

  • Vikman J, Jimenez-Feltstrom J, Nyman P, Thelin J, Eliasson L (2009) Insulin secretion is highly sensitive to desorption of plasma membrane cholesterol. FASEB J 23:58–67

    Article  PubMed  CAS  Google Scholar 

  • Wang CT, Bai J, Chang PY, Chapman ER, Jackson MB (2006) Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J Physiol 570:295–307

    PubMed  CAS  Google Scholar 

  • Wang N, Kwan C, Gong X, de Chaves EP, Tse A, Tse FW (2010) Influence of cholesterol on catecholamine release from the fusion pore of large dense core chromaffin granules. J Neurosci 30:3904–3911

    Article  PubMed  CAS  Google Scholar 

  • Xia F, Gao X, Kwan E, Lam PP, Chan L, Sy K, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG (2004) Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 279:24685–24691

    Article  PubMed  CAS  Google Scholar 

  • Xia F, Leung YM, Gaisano G, Gao X, Chen Y, Fox JE, Bhattacharjee A, Wheeler MB, Gaisano HY, Tsushima RG (2007) Targeting of voltage-gated K+ and Ca2+ channels and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins to cholesterol-rich lipid rafts in pancreatic alpha-cells: effects on glucagon stimulus-secretion coupling. Endocrinology 148:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Zhang M, Zhou W, Wu Z, Ding J, Chen L, Xu T (2006) Extracellular ATP stimulates exocytosis via localized Ca(2+) release from acidic stores in rat pancreatic beta cells. Traffic 7:429–439

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  PubMed  CAS  Google Scholar 

  • Yao PM, Tabas I (2001) Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 276:42468–42476

    Article  PubMed  CAS  Google Scholar 

  • Zamir O, Charlton MP (2006) Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol 571:83–99

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Misler S (1996) Amperometric detection of quantal secretion from patch-clamped rat pancreatic beta-cells. J Biol Chem 271:270–277

    Article  PubMed  CAS  Google Scholar 

  • Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Canadian Institute of Health Research (to A. Tse) and the National Science and Engineering Research Council (to F. Tse).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick W. Tse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, A., Lee, A.K., Yan, L. et al. Influence of Cholesterol on Cellular Signaling and Fusion Pore Kinetics. J Mol Neurosci 48, 395–401 (2012). https://doi.org/10.1007/s12031-012-9760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9760-2

Keywords

Navigation