Skip to main content

Advertisement

Log in

Interacting Partners of AMPA-Type Glutamate Receptors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Glutamate is the principal excitatory neurotransmitter in the brain. The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic (AMPA) receptors, as one of several types of endogenous ionotropic glutamate receptors, mediate the fast excitatory synaptic transmission that is essential for information processing and integration in the mammalian brain. Modifications of AMPA receptors are assumed to be the molecular basis underlying learning and memory, and impairments of AMPA receptors cause certain neurological diseases, including epilepsy, autism spectrum disorders, and Alzheimer's disease. Thus, extensive studies have been conducted, and these have revealed a complex protein–protein network controlling the expression, trafficking, and function of AMPA receptors in neurons. Here, we summarize the interacting partners of AMPA-type glutamate receptors and the functional implications of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18:2423–36

    PubMed  CAS  Google Scholar 

  • Araki Y, Lin DT, Huganir RL (2010) Plasma membrane insertion of the AMPA receptor GluA2 subunit is regulated by NSF binding and Q/R editing of the ion pore. Proc Natl Acad Sci U S A 107:11080–5

    Article  PubMed  CAS  Google Scholar 

  • Ashby MC, Maier SR, Nishimune A, Henley JM (2006) Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J Neurosci 26:7046–55

    Article  PubMed  CAS  Google Scholar 

  • Bedoukian MA, Weeks AM, Partin KM (2006) Different domains of the AMPA receptor direct stargazin-mediated trafficking and stargazin-mediated modulation of kinetics. J Biol Chem 281:23908–21

    Article  PubMed  CAS  Google Scholar 

  • Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, Passafaro M (2005) NSF interaction is important for direct insertion of GluR2 at synaptic sites. Mol Cell Neurosci 28:650–60

    Article  PubMed  CAS  Google Scholar 

  • Bladt F, Tafuri A, Gelkop S, Langille L, Pawson T (2002) Epidermolysis bullosa and embryonic lethality in mice lacking the multi-PDZ domain protein GRIP1. Proc Natl Acad Sci U S A 99:6816–21

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D et al (2010) Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13:1090–7

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:817–21

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y et al (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408:936–43

    Article  PubMed  CAS  Google Scholar 

  • Chen L, El-Husseini A, Tomita S, Bredt DS, Nicoll RA (2003) Stargazin differentially controls the trafficking of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate and kainate receptors. Mol Pharmacol 64:703–6

    Article  PubMed  CAS  Google Scholar 

  • Chung HJ, Steinberg JP, Huganir RL, Linden DJ (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–5

    Article  PubMed  CAS  Google Scholar 

  • Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F et al (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28:873–86

    Article  PubMed  CAS  Google Scholar 

  • Diaz E, Ge Y, Yang YH, Loh KC, Serafini TA et al (2002) Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron 36:417–34

    Article  PubMed  CAS  Google Scholar 

  • Dong H, O'Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386:279–84

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Tzingounis AV, Trinidad JC, Fukata M, Burlingame AL et al (2005) Molecular constituents of neuronal AMPA receptors. J Cell Biol 169:399–404

    Article  PubMed  CAS  Google Scholar 

  • Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–23

    Article  PubMed  CAS  Google Scholar 

  • Gereau RW, Swanson GT. (2008) The glutamate receptors. Totowa: Humana. xi, 576 p. pp.

  • Gu J, Lee CW, Fan Y, Komlos D, Tang X et al (2010) ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13:1208–15

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fukaya M, Qiao X, Sakimura K, Watanabe M, Kano M (1999) Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J Neurosci 19:6027–36

    PubMed  CAS  Google Scholar 

  • Heine M, Groc L, Frischknecht R, Beique JC, Lounis B et al (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320:201–5

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Pang Z, Bao D, Miyazaki T, Li L et al (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–41

    Article  PubMed  CAS  Google Scholar 

  • Ito-Ishida A, Miura E, Emi K, Matsuda K, Iijima T et al (2008) Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo. J Neurosci 28:5920–30

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–95

    PubMed  CAS  Google Scholar 

  • Ives JH, Fung S, Tiwari P, Payne HL, Thompson CL (2004) Microtubule-associated protein light chain 2 is a stargazin-AMPA receptor complex-interacting protein in vivo. J Biol Chem 279:31002–9

    Article  PubMed  CAS  Google Scholar 

  • Jackson AC, Nicoll RA (2011) Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J Neurosci 31:3939–52

    Article  PubMed  CAS  Google Scholar 

  • Kalashnikova E, Lorca RA, Kaur I, Barisone GA, Li B et al (2010) SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65:80–93

    Article  PubMed  CAS  Google Scholar 

  • Kato AS, Gill MB, Yu H, Nisenbaum ES, Bredt DS (2010) TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci 33:241–8

    Article  PubMed  CAS  Google Scholar 

  • Kato AS, Siuda ER, Nisenbaum ES, Bredt DS (2008) AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59:986–96

    Article  PubMed  CAS  Google Scholar 

  • Kato AS, Zhou W, Milstein AD, Knierman MD, Siuda ER et al (2007) New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors. J Neurosci 27:4969–77

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Lisman JE (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19:4314–24

    PubMed  CAS  Google Scholar 

  • Leonard AS, Davare MA, Horne MC, Garner CC, Hell JW (1998) SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J Biol Chem 273:19518–24

    Article  PubMed  CAS  Google Scholar 

  • Letts VA, Felix R, Biddlecome GH, Arikkath J, Mahaffey CL et al (1998) The mouse stargazer gene encodes a neuronal Ca2 + −channel gamma subunit. Nat Genet 19:340–7

    Article  PubMed  CAS  Google Scholar 

  • Letts VA, Valenzuela A, Kirley JP, Sweet HO, Davisson MT, Frankel WN (1997) Genetic and physical maps of the stargazer locus on mouse chromosome 15. Genomics 43:62–8

    Article  PubMed  CAS  Google Scholar 

  • Li P, Kerchner GA, Sala C, Wei F, Huettner JE et al (1999) AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses. Nat Neurosci 2:972–7

    Article  PubMed  CAS  Google Scholar 

  • Li SY, Xu DS, Jia HT (2003) AGS-induced expression of Narp is concomitant with expression of AMPA receptor subunits GluR1 and GluR2 in hippocampus but not inferior colliculus of P77PMC rats. Neurobiol Dis 14:328–35

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ, Connor JA (1993) Cellular mechanisms of long-term depression in the cerebellum. Curr Opin Neurobiol 3:401–6

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Malenka RC, Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci 14:379–97

    Article  PubMed  CAS  Google Scholar 

  • Malinow R (2003) AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:707–14

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci U S A 107:19038–43

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K et al (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328:363–8

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML (2006) Glutamate receptors at atomic resolution. Nature 440:456–62

    Article  PubMed  CAS  Google Scholar 

  • Menuz K, Kerchner GA, O'Brien JL, Nicoll RA (2009) Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 56:22–9

    Article  PubMed  CAS  Google Scholar 

  • Morgan A, Burgoyne RD (2004) Membrane traffic: controlling membrane fusion by modifying NSF. Curr Biol 14:R968–70

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Cheng Y, Ramm E, Sheng M, Walz T (2005) Structure and different conformational states of native AMPA receptor complexes. Nature 433:545–9

    Article  PubMed  CAS  Google Scholar 

  • Newpher TM, Ehlers MD (2008) Glutamate receptor dynamics in dendritic microdomains. Neuron 58:472–97

    Article  PubMed  CAS  Google Scholar 

  • Nishimune A, Isaac JT, Molnar E, Noel J, Nash SR et al (1998) NSF binding to GluR2 regulates synaptic transmission. Neuron 21:87–97

    Article  PubMed  CAS  Google Scholar 

  • Noel J, Ralph GS, Pickard L, Williams J, Molnar E et al (1999) Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23:365–76

    Article  PubMed  CAS  Google Scholar 

  • Nuriya M, Oh S, Huganir RL (2005) Phosphorylation-dependent interactions of alpha-Actinin-1/IQGAP1 with the AMPA receptor subunit GluR4. J Neurochem 95:544–52

    Article  PubMed  CAS  Google Scholar 

  • O'Brien R, Xu D, Mi R, Tang X, Hopf C, Worley P (2002) Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J Neurosci 22:4487–98

    PubMed  Google Scholar 

  • O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–23

    Article  PubMed  Google Scholar 

  • Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L et al (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21:99–110

    Article  PubMed  CAS  Google Scholar 

  • Panicker S, Brown K, Nicoll RA (2008) Synaptic AMPA receptor subunit trafficking is independent of the C terminus in the GluR2-lacking mouse. Proc Natl Acad Sci U S A 105:1032–7

    Article  PubMed  CAS  Google Scholar 

  • Priel A, Kolleker A, Ayalon G, Gillor M, Osten P, Stern-Bach Y (2005) Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 25:2682–6

    Article  PubMed  CAS  Google Scholar 

  • Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H et al (2005) TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 8:1525–33

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh G, Sia GM, Garner CC, Huganir RL (2003) Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons. J Neurosci 23:4567–76

    PubMed  CAS  Google Scholar 

  • Rust MB, Gurniak CB, Renner M, Vara H, Morando L et al (2010) Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 29:1889–902

    Article  PubMed  CAS  Google Scholar 

  • Sans N, Racca C, Petralia RS, Wang YX, McCallum J, Wenthold RJ (2001) Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J Neurosci 21:7506–16

    PubMed  CAS  Google Scholar 

  • Schulz TW, Nakagawa T, Licznerski P, Pawlak V, Kolleker A et al (2004) Actin/alpha-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J Neurosci 24:8584–94

    Article  PubMed  CAS  Google Scholar 

  • Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A et al (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323:1313–9

    Article  PubMed  CAS  Google Scholar 

  • Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23:9220–8

    PubMed  CAS  Google Scholar 

  • Sharma K, Fong DK, Craig AM (2006) Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol Cell Neurosci 31:702–12

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Liang F, Walensky LD, Huganir RL (2000) Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1 N-linked actin cytoskeletal association. J Neurosci 20:7932–40

    PubMed  CAS  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Suh YH, Milstein AD, Isozaki K, Schmid SM et al (2010) Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating. Proc Natl Acad Sci U S A 107:16315–9

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(49–65):111–25

    Google Scholar 

  • Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–56

    Article  PubMed  CAS  Google Scholar 

  • Soto D, Coombs ID, Renzi M, Zonouzi M, Farrant M, Cull-Candy SG (2009) Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5. Nat Neurosci 12:277–85

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Osten P, Vilim FS, Khatri L, Inman G et al (1998) Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21:581–91

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Kessler M, Arai AC (2008) The fast kinetics of AMPA GluR3 receptors is selectively modulated by the TARPs gamma 4 and gamma 8. Mol Cell Neurosci 38:117–23

    Article  PubMed  CAS  Google Scholar 

  • Swanson GT (2009) Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon? Neuropsychopharmacology 34:249–50

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Adesnik H, Sekiguchi M, Zhang W, Wada K et al (2005) Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435:1052–8

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ et al (2003) Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161:805–16

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Fukata M, Nicoll RA, Bredt DS (2004) Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 303:1508–11

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–96

    Article  PubMed  CAS  Google Scholar 

  • Tsui CC, Copeland NG, Gilbert DJ, Jenkins NA, Barnes C, Worley PF (1996) Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J Neurosci 16:2463–78

    PubMed  CAS  Google Scholar 

  • Turetsky D, Garringer E, Patneau DK (2005) Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J Neurosci 25:7438–48

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T et al (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–79

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe W, Nicoll RA, Bredt DS (2005) Stargazin is an AMPA receptor auxiliary subunit. Proc Natl Acad Sci U S A 102:485–90

    Article  PubMed  CAS  Google Scholar 

  • Volk L, Kim CH, Takamiya K, Yu Y, Huganir RL (2010) Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning. Proc Natl Acad Sci U S A 107:21784–9

    Article  PubMed  Google Scholar 

  • von Engelhardt J, Mack V, Sprengel R, Kavenstock N, Li KW et al (2010) CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327:1518–22

    Article  Google Scholar 

  • Wang R, Walker CS, Brockie PJ, Francis MM, Mellem JE et al (2008) Evolutionary conserved role for TARPs in the gating of glutamate receptors and tuning of synaptic function. Neuron 59:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Wyszynski M, Kim E, Yang FC, Sheng M (1998) Biochemical and immunocytochemical characterization of GRIP, a putative AMPA receptor anchoring protein, in rat brain. Neuropharmacology 37:1335–44

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Zhang X, Staudinger J, Huganir RL (1999) Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22:179–87

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Hopf C, Reddy R, Cho RW, Guo L et al (2003) Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39:513–28

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Ohno-Shosaku T, Fukaya M, Kano M, Watanabe M, Sakimura K (2004) A novel action of stargazin as an enhancer of AMPA receptor activity. Neurosci Res 50:369–74

    Article  PubMed  CAS  Google Scholar 

  • Yuen EY, Liu W, Kafri T, van Praag H, Yan Z (2010) Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol 588:2361–71

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M (2008) Cbln and C1q family proteins: new transneuronal cytokines. Cell Mol Life Sci 65:1698–705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program 2011CB809102 to C.Z.), the National Natural Science Foundation of China (31171025 to C.Z.; 81071075 to L.W.), Program for New Century Excellent Talents in University of Ministry of Education of China (to C.Z.), the “985” Research Foundation of Peking University (to C.Z.), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (to C.Z.), and the RFDP-HEC (20093420120004 to L.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bei Wu or Chen Zhang.

Additional information

Juan Cheng, Jie Dong and Yaxuan Cui contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Dong, J., Cui, Y. et al. Interacting Partners of AMPA-Type Glutamate Receptors. J Mol Neurosci 48, 441–447 (2012). https://doi.org/10.1007/s12031-012-9724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9724-6

Keywords

Navigation