Skip to main content

Advertisement

Log in

Stress and Glucocorticoids Increase Transthyretin Expression in Rat Choroid Plexus via Mineralocorticoid and Glucocorticoid Receptors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transthyretin (TTR) is a carrier for thyroid hormones and retinol binding protein. Several mutated forms of TTR cause familial amyloidotic polyneuropathy, an inheritable lethal disease. On the other hand, wild-type TTR has a protective role against Alzheimer’s disease. Despite its overall importance in normal animal physiology and in disease, few studies have focused on its regulation. An in silico analysis of the rat TTR gene revealed a glucocorticoid responsive element in the 3′ region of the first intron. Thus, we hypothesised that TTR could be regulated by glucocorticoid hormones and investigated the regulation of TTR expression in response to hydrocortisone in a rat choroid plexus cell line (RCP) and in primary cultures of choroid plexus epithelial cells (CPEC). In addition, the effect of psychosocial stress on TTR expression was analysed in rat liver, choroid plexus (CP) and cerebrospinal fluid (CSF). In RCP and CPEC cultures hydrocortisone upregulated TTR expression, an effect suppressed by glucocorticoid receptor and mineralocorticoid receptor antagonists. Moreover, induction of psychosocial stress increased TTR expression in liver, CP and CSF of animals subjected to acute and chronic stress conditions. Overall, we conclude that stress upregulates TTR expression in CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alkadhi KA, Alzoubi KH, Aleisa AM, Tanner FL, Nimer AS (2005) Psychosocial stress-induced hypertension results from in vivo expression of long-term potentiation in rat sympathetic ganglia. Neurobiol Dis 20:849–857

    Article  PubMed  CAS  Google Scholar 

  • Alkadhi KA, Srivareerat M, Tran TT (2010) Intensification of long-term memory deficit by chronic stress and prevention by nicotine in a rat model of Alzheimer's disease. Mol Cell Neurosci 45:289–296

    Article  PubMed  CAS  Google Scholar 

  • Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553

    Article  PubMed  CAS  Google Scholar 

  • Bartels M, Van den Berg M, Sluyter F, Boomsma DI, de Geus EJ (2003) Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology 28:121–137

    Article  PubMed  CAS  Google Scholar 

  • Bernatova I, Csizmadiova Z (2006) Effect of chronic social stress on nitric oxide synthesis and vascular function in rats with family history of hypertension. Life Sci 78:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Bernatova I, Puzserova A, Navarova J, Csizmadiova Z, Zeman M (2007) Crowding-induced alterations in vascular system of Wistar-Kyoto rats: role of nitric oxide. Physiol Res 56:667–669

    PubMed  CAS  Google Scholar 

  • Brouwer JP, Appelhof BC, Hoogendijk WJ, Huyser J, Endert E, Zuketto C et al (2005) Thyroid and adrenal axis in major depression: a controlled study in outpatients. Eur J Endocrinol 152:185–191

    Article  PubMed  CAS  Google Scholar 

  • Brown KJ, Grunberg NE (1995) Effects of housing on male and female rats: crowding stresses male but calm females. Physiol Behav 58:1085–1089

    Article  PubMed  CAS  Google Scholar 

  • Bugajski J, Gadek-Michalska A, Borycz J, Wieczorek E (1994) Effect of crowding on corticosterone responses to central adrenergic stimulation. Agents Actions 41:C73–C74

    Article  PubMed  CAS  Google Scholar 

  • Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65:56–79

    Article  PubMed  Google Scholar 

  • Cinalli GMWJ, Sainte-Rose C (2004) Pediatric hydrocephalus. Springer, Milan, p 477

    Book  Google Scholar 

  • Clow A, Hucklebridge F, Stalder T, Evans P, Thorn L (2010) The cortisol awakening response: more than a measure of HPA axis function. Neurosci Biobehav Rev 35:97–103

    Article  PubMed  CAS  Google Scholar 

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  • de Jong FJ, Masaki K, Chen H, Remaley AT, Breteler MM, Petrovitch H et al (2009) Thyroid function, the risk of dementia and neuropathologic changes: the Honolulu-Asia aging study. Neurobiol Aging 30:600–606

    Article  PubMed  Google Scholar 

  • Djordjevic A, Adzic M, Djordjevic J, Radojcic MB (2010) Chronic social isolation suppresses proplastic response and promotes proapoptotic signalling in prefrontal cortex of Wistar rats. J Neurosci Res 88:2524–2533

    PubMed  CAS  Google Scholar 

  • Dong H, Csernansky JG (2009) Effects of stress and stress hormones on amyloid-beta protein and plaque deposition. J Alzheimers Dis 18:459–469

    PubMed  CAS  Google Scholar 

  • Felding P, Fex G (1982) Cellular origin of prealbumin in the rat. Biochim Biophys Acta 716:446–449

    Article  PubMed  CAS  Google Scholar 

  • Fukuda S, Morimoto K (2001) Lifestyle, stress and cortisol response: review I: mental stress. Environ Health Prev Med 6:9–14

    Article  PubMed  CAS  Google Scholar 

  • Gamallo A, Villanua A, Trancho G, Fraile A (1986) Stress adaptation and adrenal activity in isolated and crowded rats. Physiol Behav 36:217–221

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Sanchez EP (2010) The mammalian mineralocorticoid receptor: tying down a promiscuous receptor. Exp Physiol 95:13–18

    Article  PubMed  CAS  Google Scholar 

  • Grissom N, Iyer V, Vining C, Bhatnagar S (2007) The physical context of previous stress exposure modifies hypothalamic-pituitary-adrenal responses to a subsequent homotypic stress. Horm Behav 51:95–103

    Article  PubMed  CAS  Google Scholar 

  • Gunnar M, Quevedo K (2007) The neurobiology of stress and development. Annu Rev Psychol 58:145–173

    Article  PubMed  Google Scholar 

  • Haller J, Fuchs E, Halasz J, Makara GB (1999) Defeat is a major stressor in males while social instability is stressful mainly in females: towards the development of a social stress model in female rats. Brain Res Bull 50:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hellhammer DH, Wust S, Kudielka BM (2009) Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34:163–171

    Article  PubMed  CAS  Google Scholar 

  • Helmreich DL, Parfitt DB, Lu XY, Akil H, Watson SJ (2005) Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during repeated stress. Neuroendocrinology 81:183–192

    Article  PubMed  CAS  Google Scholar 

  • Herzog CJ, Czeh B, Corbach S, Wuttke W, Schulte-Herbruggen O, Hellweg R et al (2009) Chronic social instability stress in female rats: a potential animal model for female depression. Neuroscience 159:982–992

    Article  PubMed  CAS  Google Scholar 

  • Joo Y, Choi KM, Lee YH, Kim G, Lee DH, Roh GS et al (2009) Chronic immobilization stress induces anxiety- and depression-like behaviors and decreases transthyretin in the mouse cortex. Neurosci Lett 461:121–125

    Article  PubMed  CAS  Google Scholar 

  • Kapaki E, Ilias I, Paraskevas GP, Theotoka I, Christakopoulou I (2003) Thyroid function in patients with Alzheimer's disease treated with cholinesterase inhibitors. Acta Neurobiol Exp (Wars) 63:389–392

    Google Scholar 

  • Kelly GS (2000) Peripheral metabolism of thyroid hormones: a review. Altern Med Rev 5:306–333

    PubMed  CAS  Google Scholar 

  • Kitraki E, Alexis MN, Papalopoulou M, Stylianopoulou F (1996) Glucocorticoid receptor gene expression in the embryonic rat brain. Neuroendocrinology 63:305–317

    Article  PubMed  CAS  Google Scholar 

  • Kohda K, Jinde S, Iwamoto K, Bundo M, Kato N, Kato T (2006) Maternal separation stress drastically decreases expression of transthyretin in the brains of adult rat offspring. Int J Neuropsychopharmacol 9:201–208

    Article  PubMed  CAS  Google Scholar 

  • Kuhn ER, Geris KL, van der Geyten S, Mol KA, Darras VM (1998) Inhibition and activation of the thyroidal axis by the adrenal axis in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 120:169–174

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Blalock EM, Chen KC, Porter NM (2007) A new glucocorticoid hypothesis of brain aging: implications for Alzheimer's disease. Curr Alzheimer Res 4:205–212

    Article  PubMed  CAS  Google Scholar 

  • Lathe R (2001) Hormones and the hippocampus. J Endocrinol 169:205–231

    Article  PubMed  CAS  Google Scholar 

  • Li MD, Kane JK, Matta SG, Blaner WS, Sharp BM (2000) Nicotine enhances the biosynthesis and secretion of transthyretin from the choroid plexus in rats: implications for beta-amyloid formation. J Neurosci 20:1318–1323

    PubMed  CAS  Google Scholar 

  • Lightman SL (2008) The neuroendocrinology of stress: a never ending story. J Neuroendocrinol 20:880–884

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Wang J, Sauter NK, Pearce D (1995) Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc Natl Acad Sci U S A 92:12480–12484

    Article  PubMed  CAS  Google Scholar 

  • Lizcano F, Rodriguez JS (2011) Thyroid hormone therapy modulates hypothalamo-pituitary-adrenal axis. Endocr J 58:137–142

    Article  PubMed  CAS  Google Scholar 

  • Marini F, Pozzato C, Andreetta V, Jansson B, Arban R, Domenici E et al (2006) Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res 1067:25–35

    Article  PubMed  CAS  Google Scholar 

  • Marti O, Gavalda A, Jolin T, Armario A (1993) Effect of regularity of exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thyroid stimulating hormone in the adult male rat. Psychoneuroendocrinology 18:67–77

    Article  PubMed  CAS  Google Scholar 

  • Martinho A, Goncalves I, Cardoso I, Almeida MR, Quintela T, Saraiva MJ et al (2010) Human metallothioneins 2 and 3 differentially affect amyloid-beta binding by transthyretin. FEBS J 277:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Matousek RH, Dobkin PL, Pruessner J (2010) Cortisol as a marker for improvement in mindfulness-based stress reduction. Complement Ther Clin Pract 16:13–19

    Article  PubMed  Google Scholar 

  • Mizokami T, Wu Li A, El-Kaissi S, Wall JR (2004) Stress and thyroid autoimmunity. Thyroid 14:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Monaco HL (2000) The transthyretin-retinol-binding protein complex. Biochim Biophys Acta 1482:65–72

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja HS, Jeganathan PS (2003) Effect of acute and chronic conditions of over-crowding on free choice ethanol intake in rats. Indian J Physiol Pharmacol 47:325–331

    PubMed  CAS  Google Scholar 

  • Nishi M, Kawata M (2007) Dynamics of glucocorticoid receptor and mineralocorticoid receptor: implications from live cell imaging studies. Neuroendocrinology 85:186–192

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, Wan R, Mattson MP (2001) Impact of aging on stress-responsive neuroendocrine systems. Mech Ageing Dev 122:963–983

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Puskas LG, Kitajka K, Nyakas C, Barcelo-Coblijn G, Farkas T (2003) Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc Natl Acad Sci U S A 100:1580–1585

    Article  PubMed  CAS  Google Scholar 

  • Puzserova A, Csizmadiova Z, Andriantsitohaina R, Bernatova I (2006) Vascular effects of red wine polyphenols in chronic stress-exposed Wistar-Kyoto rats. Physiol Res 55(Suppl 1):S39–47

    PubMed  CAS  Google Scholar 

  • Quintela T, Alves CH, Goncalves I, Baltazar G, Saraiva MJ, Santos CR (2008) 5Alpha-dihydrotestosterone up-regulates transthyretin levels in mice and rat choroid plexus via an androgen receptor independent pathway. Brain Res 1229:18–26

    Article  PubMed  CAS  Google Scholar 

  • Quintela T, Goncalves I, Baltazar G, Alves CH, Saraiva MJ, Santos CR (2009) 17beta-estradiol induces transthyretin expression in murine choroid plexus via an oestrogen receptor dependent pathway. Cell Mol Neurobiol 29:475–483

    Article  PubMed  CAS  Google Scholar 

  • Quintela T, Goncalves I, Martinho A, Alves CH, Saraiva MJ, Rocha P et al (2011) Progesterone enhances transthyretin expression in the rat choroid plexus in vitro and in vivo via progesterone receptor. J Mol Neurosci 44:152–158

    Article  PubMed  CAS  Google Scholar 

  • Raz A, Goodman DS (1969) The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J Biol Chem 244:3230–3237

    PubMed  CAS  Google Scholar 

  • Santos CRA, Cardoso I, Goncalves I (2011) Key enzymes and proteins in amyloid-beta production and clearance. In: Alzheimer’s disease pathogenesis: core concepts, shifting paradigms and therapeutic targets. Suzanne M. de la Monte, editor. InTech 686

  • Saraiva MJ (2001) Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum Mutat 17:493–503

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Yoshioka N, Takagi Y, Sakaki Y (1985) Structure of the chromosomal gene for human serum prealbumin. Gene 37:191–197

    Article  PubMed  CAS  Google Scholar 

  • Savory JG, Prefontaine GG, Lamprecht C, Liao M, Walther RF, Lefebvre YA et al (2001) Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol Cell Biol 21:781–793

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AJ, Onyimba CU, Khosla P, Vijapurapu N, Tomlinson JW, Burdon MA et al (2007) Corticosteroids, 11beta-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus. J Neuroendocrinol 19:614–620

    Article  PubMed  CAS  Google Scholar 

  • Soprano DR, Herbert J, Soprano KJ, Schon EA, Goodman DS (1985) Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J Biol Chem 260:11793–11798

    PubMed  CAS  Google Scholar 

  • Sousa RJ, Tannery NH, Lafer EM (1989) In situ hybridization mapping of glucocorticoid receptor messenger ribonucleic acid in rat brain. Mol Endocrinol 3:481–494

    Article  PubMed  CAS  Google Scholar 

  • Sousa JC, Cardoso I, Marques F, Saraiva MJ, Palha JA (2007) Transthyretin and Alzheimer's disease: where in the brain? Neurobiol Aging 28:713–718

    Article  PubMed  CAS  Google Scholar 

  • Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22:7380–7388

    PubMed  CAS  Google Scholar 

  • Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 34:777–790

    Article  PubMed  CAS  Google Scholar 

  • Sun XG, Zhong XL, Liu ZF, Cai HB, Fan Q, Wang QR et al (2010) Proteomic analysis of chronic restraint stress-induced Gan ()-stagnancy syndrome in rats. Chin J Integr Med 16:510–517

    Article  PubMed  CAS  Google Scholar 

  • Tan ZS, Vasan RS (2009) Thyroid function and Alzheimer's disease. J Alzheimers Dis 16:503–507

    PubMed  CAS  Google Scholar 

  • Tang YP, Haslam SZ, Conrad SE, Sisk CL (2004) Estrogen increases brain expression of the mRNA encoding transthyretin, an amyloid beta scavenger protein. J Alzheimers Dis 6:413–20, discussion 443-449

    PubMed  CAS  Google Scholar 

  • Tran TT, Srivareerat M, Alkadhi KA (2010) Chronic psychosocial stress triggers cognitive impairment in a novel at-risk model of Alzheimer's disease. Neurobiol Dis 37:756–763

    Article  PubMed  CAS  Google Scholar 

  • Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP (2006) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 291:E965–973

    Article  PubMed  CAS  Google Scholar 

  • Vicario M, Guilarte M, Alonso C, Yang P, Martinez C, Ramos L et al (2010) Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 24:1166–1175

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi S, Maeda S, Shimada K (1986) Structure and expression of the mouse prealbumin gene. J Biochem (Tokyo) 100:49–58

    CAS  Google Scholar 

  • Watanabe CM, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ et al (2001) The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba. Proc Natl Acad Sci U S A 98:6577–6580

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek C, Ter Horst GJ, Roos MH, Kuipers SD, Trentani A, den Boer JA (2003) Gender-specific effects of social housing in rats after chronic mild stress exposure. Prog Neuropsychopharmacol Biol Psychiatry 27:21–30

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A. Martinho was supported by a doctoral fellowship from Fundação para a Ciência e Tecnologia from Portugal (SFRH⁄BD⁄32424⁄2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 13 kb)

High resolution image (TIFF 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinho, A., Gonçalves, I., Costa, M. et al. Stress and Glucocorticoids Increase Transthyretin Expression in Rat Choroid Plexus via Mineralocorticoid and Glucocorticoid Receptors. J Mol Neurosci 48, 1–13 (2012). https://doi.org/10.1007/s12031-012-9715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9715-7

Keywords

Navigation