Skip to main content

Advertisement

Log in

Selection for stress-induced analgesia affects the mouse hippocampal transcriptome

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Stress responsiveness, including pain sensitivity and stress-induced analgesia (SIA), depends on genotype and, partially, is mediated by hippocampus. The present study examined differences in constitutive gene expression in hippocampus in lines of mice bred for high (HA) and low (LA) swim SIA. Between the lines, we found 1.5-fold or greater differences in expression of 205 genes in the hippocampus in nonstressed animals. The identity of these genes indicates that selective breeding for swim SIA affected many aspects of hippocampal neurons physiology, including metabolism, structural changes, and cellular signaling. Genes involved in calcium signaling pathway, including Slc8a1, Slc8a2, Prkcc, and Ptk2b, were upregulated in LA mice. In HA mice, robust upregulation of genes coding some transcription factors (Klf5) or receptors for neurotensin (Ntsr2) and GABA (Gabard) suggests the genetic basis for a novel mechanism of the non-opioid type of SIA in HA animals. Additional groups of differentially expressed genes represented functional networks involved in carbohydrate metabolism, gene expression regulation, and molecular transport. Our data indicate that selection for a single and very specific stress response trait, swim SIA, alters hippocampal gene expression. The results suggest that individual stress responsiveness may be associated with characteristics of the constitutive hippocampal transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

cDNA:

complementary DNA

cRNA:

complementary RNA

E:

real-time PCR efficiency

EASE:

expression analysis systemic explorer

GABA:

γ-Aminobutyric acid

GABAA/B:

γ-Aminobutyric acid receptors

HA:

line of mice selected for high swim stress-induced analgesia

IEGs:

immediate early genes

IPA:

ingenuity pathway analysis

KLF5:

Krueppel-like factor 5

LA:

line of mice selected for low swim stress-induced analgesia

MAP:

mitogen-activated protein

NF:

normalization factor

NMDA:

N-metylo-d-asparaginian

NT:

neurotensin

qRT:

quantitative real time

R:

relative expression ratio

SIA:

stress-induced analgesia

TF:

transcription factor

References

  • Akirav I, Maroun M (2006) Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cereb Cortex 16:1759–1765

    Article  PubMed  Google Scholar 

  • Al Amin HA, Atweh SF, Jabbur SJ, Saade NE (2004) Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci 20:3027–3034

    Article  PubMed  Google Scholar 

  • Aloisi AM, Casamenti F, Scali C, Pepeu G, Carli G (1997) Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 748:219–226

    Article  PubMed  CAS  Google Scholar 

  • Aso E, Ozaita A, Serra MA, Maldonado R (2011) Genes differentially expressed in CB1 knockout mice: Involvement in the depressive-like phenotype. Eur Neuropsychopharmacol 21:11–22

    Article  PubMed  CAS  Google Scholar 

  • Asselin ML, Dubuc I, Coquerel A, Costentin J (2001) Localization of neurotensin NTS2 receptors in rat brain, using. Neuroreport 12:1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Azzi M, Betancur C, Sillaber I, Spanagel R, Rostene W, Berod A (1998) Repeated administration of the neurotensin receptor antagonist SR 48692 differentially regulates mesocortical and mesolimbic dopaminergic systems. J Neurochem 71:1158–1167

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 57:289–300

    Google Scholar 

  • Boudin H, Pelaprat D, Rostene W, Beaudet A (1996) Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J Comp Neurol 373:76–89

    Article  PubMed  CAS  Google Scholar 

  • Bredeloux P, Costentin J, Dubuc I (2006) Interactions between NTS2 neurotensin and opioid receptors on two nociceptive responses assessed on the hot plate test in mice. Behav Brain Res 175:399–407

    Article  PubMed  CAS  Google Scholar 

  • Bredeloux P, Cavelier F, Dubuc I, Vivet B, Costentin J, Martinez J (2008) Synthesis and biological effects of c(Lys-Lys-Pro-Tyr-Ile-Leu-Lys-Lys-Pro-Tyr-Ile-Leu) (JMV2012), a new analogue of neurotensin that crosses the blood-brain barrier. J Med Chem 51:1610–1616

    Article  PubMed  CAS  Google Scholar 

  • Buhler AV, Choi J, Proudfit HK, Gebhart GF (2005) Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain 114:285–294

    Article  PubMed  CAS  Google Scholar 

  • Buhler AV, Proudfit HK, Gebhart GF (2008) Neurotensin-produced antinociception in the rostral ventromedial medulla is partially mediated by spinal cord norepinephrine. Pain 135:280–290

    Article  PubMed  CAS  Google Scholar 

  • Butler RK, Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184–202

    Article  PubMed  CAS  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  • Chanchevalap S, Nandan MO, McConnell BB, Charrier L, Merlin D, Katz JP, Yang VW (2006) Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res 34:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Benjamin MS, Sun X, Otto KB, Guo P, Dong XY, Bao Y, Zhou Z, Cheng X, Simons JW, Dong JT (2006) KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer 118:1346–1355

    Article  PubMed  CAS  Google Scholar 

  • Coderre TJ (1993) The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol Neurobiol 7:229–246

    Article  PubMed  CAS  Google Scholar 

  • Coderre TJ, Van Empel I (1994) The utility of excitatory amino acid (EAA) antagonists as analgesic agents. I. Comparison of the antinociceptive activity of various classes of EAA antagonists in mechanical, thermal and chemical nociceptive tests. Pain 59:345–352

    Article  PubMed  CAS  Google Scholar 

  • Dickenson AH, Chapman V, Green GM (1997) The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 28:633–638

    PubMed  CAS  Google Scholar 

  • Dobner PR (2006) Neurotensin and pain modulation. Peptides 27:2405–2414

    Article  PubMed  CAS  Google Scholar 

  • Dubuc I, Remande S, Costentin J (1999) The partial agonist properties of levocabastine in neurotensin-induced analgesia. Eur J Pharmacol 381:9–12

    Article  PubMed  CAS  Google Scholar 

  • Duric V, McCarson KE (2006) Effects of analgesic or antidepressant drugs on pain- or stress-evoked hippocampal and spinal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression in the rat. J Pharmacol Exp Ther 319:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Fabre V, Massart R, Rachalski A, Jennings K, Brass A, Sharp T, Lesch KP, Lanfumey L, Hamon M (2011) Differential gene expression in mutant mice overexpressing or deficient in the serotonin transporter: a focus on urocortin 1. Eur Neuropsychopharmacol 21:33–34

    Article  PubMed  CAS  Google Scholar 

  • Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC (2000) Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology 39:1430–1442

    Article  PubMed  CAS  Google Scholar 

  • Favaroni Mendes LA, Menescal-de-Oliveira L (2008) Role of cholinergic, opioidergic and GABAergic neurotransmission of the dorsal hippocampus in the modulation of nociception in guinea pigs. Life Sci 83:644–650

    Article  PubMed  CAS  Google Scholar 

  • Flor H, Grusser SM (1999) Conditioned stress-induced analgesia in humans. Eur J Pain 3:317–324

    Article  PubMed  Google Scholar 

  • Ford GK, Finn DP (2008) Clinical correlates of stress-induced analgesia: evidence from pharmacological studies. Pain 140:3–7

    Article  PubMed  Google Scholar 

  • Fukuda T, Nishimoto C, Miyabe M, Toyooka H (2001) The residual effects of hemorrhagic shock on pain reaction and c-fos expression in rats. Anesth Analg 93:424–429, 424th contents page

    PubMed  CAS  Google Scholar 

  • Groeneweg FL, Karst H, de Kloet ER, Joels M (2011) Rapid non-genomic effects of corticosteroids and their role in the central stress response. J Endocrinol 209:153–167

    Article  PubMed  CAS  Google Scholar 

  • Gui X, Carraway RE (2004) Involvement of mast cells in basal and neurotensin-induced intestinal absorption of taurocholate in rats. Am J Physiol Gastrointest Liver Physiol 287:G408–G416

    Article  PubMed  CAS  Google Scholar 

  • Hamon M (2006) Science Vision, University of Maastricht

  • Harris JA, Westbrook RF (1995) Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats. Behav Neurosci 109:295–304

    Article  PubMed  CAS  Google Scholar 

  • Harris JA, Westbrook RF (1996) Midazolam impairs the acquisition of conditioned analgesia if rats are tested with an acute but not a chronic noxious stimulus. Brain Res Bull 39:227–233

    Article  PubMed  CAS  Google Scholar 

  • Helmstetter FJ (1993) Stress-induced hypoalgesia and defensive freezing are attenuated by application of diazepam to the amygdala. Pharmacol Biochem Behav 44:433–438

    Article  PubMed  CAS  Google Scholar 

  • Henke PG (1982) The telencephalic limbic system and experimental gastric pathology: a review. Neurosci Biobehav Rev 6:381–390

    Article  PubMed  CAS  Google Scholar 

  • Herschman HR (1989) Extracellular signals, transcriptional responses and cellular specificity. Trends Biochem Sci 14:455–458

    Article  PubMed  CAS  Google Scholar 

  • Hodge DL, Schill WB, Ming Wang J, Blanca I, Reynolds DA, Ortaldo JR, Young HA (2002) IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXR3 expression. J Immunol 12:6090–6098

    Google Scholar 

  • Hoyle D, Juhasz G, Aso E, Chase D, del Rio J, Fabre V, Hamon M, Lanfumey L, Lesch KP, Maldonado R (2011) Shared changes in gene expression in frontal cortex of four genetically modified mouse models of depression. Eur Neuropsychopharmacol 21:3–10

    Article  PubMed  CAS  Google Scholar 

  • Juszczak GR, Sliwa AT, Wolak P, Tymosiak-Zielinska A, Lisowski P, Swiergiel AH (2006) The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacol Biochem Behav 85:332–338

    Article  PubMed  CAS  Google Scholar 

  • Juszczak GR, Blaszczyk J, Sadowski B, Sliwa AT, Wolak P, Tymosiak-Zielinska A, Lisowski P, Swiergiel AH (2008a) Lipopolysaccharide does not affect acoustic startle reflex in mice. Brain Behav Immun 22:74–79

    Article  PubMed  CAS  Google Scholar 

  • Juszczak GR, Lisowski P, Sliwa AT, Swiergiel AH (2008b) Computer assisted video analysis of swimming performance in a forced swim test: simultaneous assessment of duration of immobility and swimming style in mice selected for high and low swim-stress induced analgesia. Physiol Behav 95:400–407

    Article  PubMed  CAS  Google Scholar 

  • Juszczak GR, Lisowski P, Wieczorek M, Goscik J, Sliwa AT, Swiergiel AH (2009) Effect of chronic mild stress on gene expression in raphe nuclei: role of 5-HT (5B) and orphan Gpr88 receptors in stress adaptation in mice. Eur Neuropsychopharmacol 19(S3):S225

    Article  Google Scholar 

  • Kavaliers M, Colwell DD, Choleris E (1998) Sex differences in opioid and N-methyl-d-aspartate mediated non-opioid biting fly exposure induced analgesia in deer mice. Pain 77:163–171

    Article  PubMed  CAS  Google Scholar 

  • Kelsey JE, Baker MD (1983) Ventromedial septal lesions in rats reduce the effects of inescapable shock on escape performance and analgesia. Behav Neurosci 97:945–961

    Article  PubMed  CAS  Google Scholar 

  • Kest B, Jenab S, Brodsky M, Sadowski B, Belknap JK, Mogil JS, Inturrisi CE (1999) Mu and delta opioid receptor analgesia, binding density, and mRNA levels in mice selectively bred for high and low analgesia. Brain Res 816:381–389

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Zheng F (1999) Morphine reversed formalin-induced CA1 pyramidal cell suppression via an effect on septohippocampal neural processing. Neuroscience 89:61–71

    Article  PubMed  CAS  Google Scholar 

  • Killian P, Holmes BB, Takemori AE, Portoghese PS, Fujimoto JM (1995) Cold water swim stress- and delta-2 opioid-induced analgesia are modulated by spinal gamma-aminobutyric acidA receptors. J Pharmacol Exp Ther 274:730–734

    PubMed  CAS  Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    Article  PubMed  CAS  Google Scholar 

  • Konarzewski M, Sadowski B, Jozwik I (1997) Metabolic correlates of selection for swim stress-induced analgesia in laboratory mice. Am J Physiol 273:R337–R343

    PubMed  CAS  Google Scholar 

  • Kurumaji A, Takashima M, Shibuya H (1987) Cold and immobilization stress-induced changes in pain responsiveness and brain Met-enkephalin-like immunoreactivity in the rat. Peptides 8:355–359

    Article  PubMed  CAS  Google Scholar 

  • Lafrance M, Roussy G, Belleville K, Maeno H, Beaudet N, Wada K, Sarret P (2010) Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience 166:639–652

    Article  PubMed  CAS  Google Scholar 

  • Lapo IB, Konarzewski M, Sadowski B (2003) Differential metabolic capacity of mice selected for magnitude of swim stress-induced analgesia. J Appl Physiol 94:677–684

    Article  PubMed  CAS  Google Scholar 

  • Lepee-Lorgeoux I, Betancur C, Rostene W, Pelaprat D (1999) Differential ontogenetic patterns of levocabastine-sensitive neurotensin NT2 receptors and of NT1 receptors in the rat brain revealed by in situ hybridization. Brain Res Dev Brain Res 113:115–131

    Article  PubMed  CAS  Google Scholar 

  • Lewis JW, Cannon JT, Liebeskind JC (1980) Opioid and nonopioid mechanisms of stress analgesia. Science 208:623–625

    Article  PubMed  CAS  Google Scholar 

  • Lisowski P, Juszczak GR, Sliwa AT, Swiergiel AH (2008) Transcriptome and biochemical pathway analysis of frontal cortex, hippocampus, hypothalamus and raphe nucleus of mice selectively bred for high and low analgesia. 38th Annual Meeting of the Society for Neuroscience, Washington, USA, 270.3/HH2

  • Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Dunn AJ, Swiergiel AH (2009a) Different modulation of transcription profiles in hippocampus of mice bred for high and low stress-induced analgesia following chronic mild stress. 39th Annual Meeting of the Society for Neuroscience, Chicago, USA, 469.16/EE50

  • Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Swiergiel AH (2009b) Different modulation of transcription profiles in hypothalamus of mice bred for high and low stress-induced analgesia following chronic mild stress. Eur Neuropsychopharmacol 19(S3):S402

    Article  Google Scholar 

  • Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Zwierzchowski L, Swiergiel AH (2010) Effect of chronic stress on frontal cortex transciptome in mice. 40nd Annual Meeting of the Society for Neuroscience, San Diego, USA, 597.3/III14

  • Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Zwierzchowski L, Swiergiel AH (2011) Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors. Eur Neuropsychopharmacol 21:45–62

    Article  PubMed  CAS  Google Scholar 

  • Liu MG, Chen J (2009) Roles of the hippocampal formation in pain information processing. Neurosci Bull 5:237–266

    Article  Google Scholar 

  • Lutfy K, Sadowski B, Kwon IS, Weber E (1994) Morphine analgesia and tolerance in mice selectively bred for divergent swim stress-induced analgesia. Eur J Pharmacol 265:171–174

    Article  PubMed  CAS  Google Scholar 

  • Lutfy K, Sadowski B, Marek P, Kwon IS, Keana JF, Weber E (1996) Differential sensitivity of mice bred for stress-induced analgesia to morphine and ACEA-1011 in the formalin test. Pharmacol Biochem Behav 54:495–500

    Article  PubMed  CAS  Google Scholar 

  • Marek P, Panocka I, Sadowski B (1987) Selective breeding of mice for high and low swim analgesia: differential effect on discrete forms of footshock analgesia. Pain 29:393–398

    Article  PubMed  CAS  Google Scholar 

  • Marek P, Page GG, Ben-Eliyahu S, Liebeskind JC (1991) N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. I. Comparison of opiate receptor-deficient and opiate receptor-rich strains of mice. Brain Res 551:293–296

    Article  PubMed  CAS  Google Scholar 

  • Marek P, Mogil JS, Belknap JK, Sadowski B, Liebeskind JC (1993) Levorphanol and swim stress-induced analgesia in selectively bred mice: evidence for genetic commonalities. Brain Res 608:353–357

    Article  PubMed  CAS  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2001) From molecules to mind. Stress, individual differences, and the social environment. Ann N Y Acad Sci 935:42–49

    Article  PubMed  CAS  Google Scholar 

  • McKenna JE, Melzack R (1992) Analgesia produced by lidocaine microinjection into the dentate gyrus. Pain 49:105–112

    Article  PubMed  CAS  Google Scholar 

  • McKenna JE, Melzack R (2001) Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol 172:92–99

    Article  PubMed  CAS  Google Scholar 

  • Meagher MW, Grau JW, King RA (1989) Frontal cortex lesions block the opioid and nonopioid hypoalgesia elicited by brief shocks but not the nonopioid hypoalgesia elicited by long shocks. Behav Neurosci 103:1366–1371

    Article  PubMed  CAS  Google Scholar 

  • Meeus M, Nijs J, Van de Wauwer N, Toeback L, Truijen S (2008) Diffuse noxious inhibitory control is delayed in chronic fatigue syndrome: an experimental study. Pain 139:439–448

    Article  PubMed  Google Scholar 

  • Millan MJ, Gramsch C, Przewlocki R, Hollt HA (1980) Lesions of the hypothalamic arcuate nucleus produce a temporary hyperalgesia and attenuate stress-evoked analgesia. Life Sci 27:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Marek P, Yirmiya R, Balian H, Sadowski B, Taylor AN, Liebeskind JC (1993) Antagonism of the non-opioid component of ethanol-induced analgesia by the NMDA receptor antagonist MK-801. Brain Res 602:126–130

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Marek P, O’Toole LA, Helms ML, Sadowski B, Liebeskind JC, Belknap JK (1994) Mu-opiate receptor binding is up-regulated in mice selectively bred for high stress-induced analgesia. Brain Res 653:16–22

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Marek P, Flodman P, Spence MA, Sternberg WF, Kest B, Sadowski B, Liebeskind JC (1995) One or two genetic loci mediate high opiate analgesia in selectively bred mice. Pain 60:125–135

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Sternberg WF, Balian H, Liebeskind JC, Sadowski B (1996) Opioid and nonopioid swim stress-induced analgesia: a parametric analysis in mice. Physiol Behav 59:123–132

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Worley PF, Nakabeppu Y, Christy B, Gastel J, Baraban JM (1991) Synaptic regulation of immediate early gene expression in primary cultures of cortical neurons. J Neurochem 57:1862–1872

    Article  PubMed  CAS  Google Scholar 

  • Nicot A, Berod A, Gully D, Rowe W, Quirion R, de Kloet ER, Rostene W (1994a) Blockade of neurotensin binding in the rat hypothalamus and of the central action of neurotensin on the hypothalamic-pituitary-adrenal axis with non-peptide receptor antagonists. Neuroendocrinology 59:572–578

    Article  PubMed  CAS  Google Scholar 

  • Nicot A, Rostene W, Berod A (1994b) Neurotensin receptor expression in the rat forebrain and midbrain: a combined analysis by in situ hybridization and receptor autoradiography. J Comp Neurol 341:407–419

    Article  PubMed  CAS  Google Scholar 

  • Nishith P, Griffin MG, Poth TL (2002) Stress-induced analgesia: prediction of posttraumatic stress symptoms in battered versus nonbattered women. Biol Psychiatry 51:867–874

    Article  PubMed  Google Scholar 

  • Okaty BW, Sugino K, Nelson SB (2011) Cell type-specific transcriptomics in the brain. J Neurosci 31:6939–6943

    Article  PubMed  CAS  Google Scholar 

  • Onodera K, Sakurada S, Furuta S, Yonezawa A, Hayashi T, Honma I, Miyazaki S (2001) Age-related differences in forced walking stress-induced analgesia in mice. Drugs Exp Clin Res 27:193–198

    CAS  PubMed  Google Scholar 

  • Panocka I, Marek P, Sadowski B (1986a) Differentiation of neurochemical basis of stress-induced analgesia in mice by selective breeding. Brain Res 397:156–160

    Article  PubMed  CAS  Google Scholar 

  • Panocka I, Marek P, Sadowski B (1986b) Inheritance of stress-induced analgesia in mice. Selective breeding study. Brain Res 397:152–155

    Article  PubMed  CAS  Google Scholar 

  • Panocka I, Massi M, Lapo I, Swiderski T, Kowalczyk M, Sadowski B (2001) Antidepressant-type effect of the NK3 tachykinin receptor agonist aminosenktide in mouse lines differing in endogenous opioid system activity. Peptides 22:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Pielsticker A, Haag G, Zaudig M, Lautenbacher S (2005) Impairment of pain inhibition in chronic tension-type headache. Pain 118:215–223

    Article  PubMed  Google Scholar 

  • Ponsuksili S, Murani E, Walz C, Schwerin M, Wimmers K (2007) Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol Genomics 29:267–279

    Article  PubMed  CAS  Google Scholar 

  • Rea K, Roche M, Finn DP (2007) Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate. Br J Pharmacol 152:633–648

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DL, Liebeskind JC (1978) Analgesia from rostral brain stem stimulation in the rat. Brain Res 143:521–532

    Article  PubMed  CAS  Google Scholar 

  • Roussy G, Dansereau MA, Dore-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P (2008) Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 105:1100–1114

    Article  PubMed  CAS  Google Scholar 

  • Roussy G, Dansereau MA, Baudisson S, Ezzoubaa F, Belleville K, Beaudet N, Martinez J, Richelson E, Sarret P (2009) Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity. Mol Pain 5:38

    Article  PubMed  CAS  Google Scholar 

  • Rowe WB, Nicot A, Sharma S, Gully D, Walker CD, Rostene WH, Meaney MJ, Quirion R (1997) Central administration of the neurotensin receptor antagonist, SR48692, modulates diurnal and stress-related hypothalamic-pituitary-adrenal activity. Neuroendocrinology 66:75–85

    Article  PubMed  CAS  Google Scholar 

  • Sacharczuk M, Jaszczak K, Sadowski B (2003) Cytogenetic comparison of the sensitivity to mutagens in mice selected for high (HA) and low (LA) swim stress-induced analgesia. Mutat Res 535:95–102

    PubMed  CAS  Google Scholar 

  • Sacharczuk M, Juszczak G, Sliwa AT, Tymosiak-Zielinska A, Lisowski P, Jaszczak K, Pluta R, Lipkowski A, Sadowski B, Swiergiel AH (2008) Differences in ethanol drinking between mice selected for high and low swim stress-induced analgesia. Alcohol 42:487–492

    Article  PubMed  CAS  Google Scholar 

  • Sacharczuk M, Juszczak G, Swiergiel AH, Jaszczak K, Lipkowski AW, Sadowski B (2009) Alcohol reverses depressive and pronociceptive effects of chronic stress in mice with enhanced activity of the opioid system. Acta Neurobiol Exp (Wars) 69:459–468

    Google Scholar 

  • Sacharczuk M, Lesniak A, Korostynski M, Przewlocki R, Lipkowski A, Jaszczak K, Sadowski B (2010) A polymorphism in exon 2 of the delta-opioid receptor affects nociception in response to specific agonists and antagonists in mice selectively bred for high and low analgesia. Pain 149:506–513

    Article  PubMed  CAS  Google Scholar 

  • Sadowski B, Konarzewski M (1999) Analgesia in selectively bred mice exposed to cold in helium/oxygen atmosphere. Physiol Behav 66:145–151

    Article  PubMed  CAS  Google Scholar 

  • Sadowski B, Panocka I (1993) Cross-tolerance between morphine and swim analgesia in mice selectively bred for high and low stress-induced analgesia. Pharmacol Biochem Behav 45:527–531

    Article  PubMed  CAS  Google Scholar 

  • Sarret P, Beaudet A, Vincent JP, Mazella J (1998) Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. J Comp Neurol 394:344–356

    Article  PubMed  CAS  Google Scholar 

  • Sarret P, Esdaile MJ, Perron A, Martinez J, Stroh T, Beaudet A (2005) Potent spinal analgesia elicited through stimulation of NTS2 neurotensin receptors. J Neurosci 25:8188–8196

    Article  PubMed  CAS  Google Scholar 

  • Seta KA, Jansen HT, Kreitel KD, Lehman M, Behbehani MM (2001) Cold water swim stress increases the expression of neurotensin mRNA in the lateral hypothalamus and medial preoptic regions of the rat brain. Brain Res Mol Brain Res 86:145–152

    Article  PubMed  CAS  Google Scholar 

  • Simoncic M, Rezen T, Juvan P, Rozman D, Fazarinc G, Fievet C, Staels B, Horvat S (2011) BMC Genomics 12:96

    Article  PubMed  CAS  Google Scholar 

  • Smith DO (1988) Muscle-specific decrease in presynaptic calcium dependence and clearance during neuromuscular transmission in aged rats. J Neurophysiol 59:1069–1082

    PubMed  CAS  Google Scholar 

  • Staud R, Robinson ME, Vierck CJ Jr, Price DD (2003) Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain 101:167–174

    Article  PubMed  Google Scholar 

  • Sternberg WF, Liebeskind JC (1995) The analgesic response to stress: genetic and gender considerations. Eur J Anaesthesiol Suppl 10:14–17

    PubMed  CAS  Google Scholar 

  • Tasker JG, Herman JP (2011) Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress 4:398–406

    Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  PubMed  CAS  Google Scholar 

  • Tokuyama S, Takahashi M, Kaneto H (1992) Participation of GABAergic systems in the production of antinociception by various stresses in mice. Jpn J Pharmacol 60:105–110

    Article  PubMed  CAS  Google Scholar 

  • Tordera RM, Garcia-García AL, Elizalde N, Segura V, Aso E, Venzala E, Ramírez MJ, Del Rio J (2011) Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol 21:23–32

    Article  PubMed  CAS  Google Scholar 

  • Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, Takuwa Y (2004) Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem 279:12300–12311

    Article  PubMed  CAS  Google Scholar 

  • Walker N, Lepee-Lorgeoux I, Fournier J, Betancur C, Rostene W, Ferrara P, Caput D (1998) Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Brain Res Mol Brain Res 57:193–200

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Sun H, Della PK, Benz J, Xu J, Gerhold DL, Holder DJ, Koblan KS (2002) Chronic neuropatic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 3:529–546

    Article  Google Scholar 

  • Watkins LR, Mayer DJ (1982) Organization of endogenous opiate and nonopiate pain control systems. Science 216:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Werka T, Marek P (1990) Post-stress analgesia after lesions to the central nucleus of the amygdala in rats. Acta Neurobiol Exp (Wars) 50:13–22

    CAS  Google Scholar 

  • Wiedenmayer CP, Barr GA (2000) Mu opioid receptors in the ventrolateral periaqueductal gray mediate stress-induced analgesia but not immobility in rat pups. Behav Neurosci 114:125–136

    Article  PubMed  CAS  Google Scholar 

  • Willer JC, Dehen H, Cambier J (1981) Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes. Science 212:689–691

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi R, Ohinata K, Yoshikawa M (2003) Beta-lactotensin and neurotensin rapidly reduce serum cholesterol via NT2 receptor. Peptides 24:1955–1961

    Article  PubMed  CAS  Google Scholar 

  • Yanagi M, Hashimoto T, Kitamura N, Fukutake M, Komure O, Nishiguchi N, Kawamata T, Maeda K, Shirakawa O (2008) Expression of Kruppel-like factor 5 gene in human brain and association of the gene with the susceptibility to schizophrenia. Schizophr Res 100:291–301

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Commission Framework 6 Integrated Project NEWMOOD (LSHMCT-2004-503474); Intramural Statutory Funds S.VI-2 and 4, and the Polish Scientific Committee Grant N N311 604938.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Lisowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Gene network graphical representation. Gene networks represent molecular relationships between genes or the genes’ products: a carbohydrate metabolism, small molecule biochemistry and energy production gene network; b gene expression and cell death gene network; c molecular transport gene network; d cellular function and maintenance gene network. Genes or gene products are represented as nodes, and the biological relationship between two nodes is represented as an edge (line). All edges are supported by at least one reference from the literature, from a textbook, or from canonical information stored in the Ingenuity® knowledge database. Human, mouse, and rat orthologs of a gene are stored as separate objects in Ingenuity® knowledge database, but are represented as a single node in the network. The intensity of the node color indicates the degree of downregulation (red) in high analgesia mice (HA) or upregulation (green) in HA. Nodes are displayed using various shapes that represent the functional class of gene product (JPEG 125 kb)

Supplementary Figure S1A

JPEG 206 kb

Supplementary Figure S1B

JPEG 225 kb

Supplementary Figure S1C

JPEG 253 kb

Supplementary Figure S1D

JPEG 255 kb

Supplementary Table S1

XLS 148 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisowski, P., Stankiewicz, A.M., Goscik, J. et al. Selection for stress-induced analgesia affects the mouse hippocampal transcriptome. J Mol Neurosci 47, 101–112 (2012). https://doi.org/10.1007/s12031-011-9692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9692-2

Keywords

Navigation