Skip to main content
Log in

Effect of Valproic Acid Through Regulation of NMDA Receptor–ERK Signaling in Sleep Deprivation Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Although the effect of mood stabilizer valproic acid (VPA) through multiple signaling pathways has been shown, its therapeutic mechanism is still largely unknown. We investigated the effect of VPA (200 mg/kg, every 12 h) in sleep deprivation (SD) rats (72 h), the manic-like animal model, focusing on the N-methyl-d-aspartic acid (NMDA) receptor and signaling mediators of synaptic plasticity such as extracellular signal-regulated protein kinase (ERK), cAMP response element-binding protein (CREB), B cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), and brain-derived neurotrophic factor (BDNF). SD reduced the expression of the NR2B subunit of the NMDA receptor in the frontal cortex and hippocampus but did not affect the expression of NR1 and NR2A subunits. In comparison, VPA inhibited the SD-induced reduction of NR2B expression in both brain regions. In addition, SD attenuated ERK phosphorylation in the frontal cortex and hippocampus, whereas VPA prevented the attenuation. VPA also protected the SD-induced decrease of CREB phosphorylation, BCL2 expression, and BDNF expression in the frontal cortex but not in the hippocampus. These results indicate that VPA could regulate NMDA receptor–ERK signaling in SD rats, preventing the SD-induced decrease of the expression of NR2B subunit and the activation of ERK signaling mediators such as ERK, CREB, BCL2, and BDNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA (2006) Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berl) 184:122–129

    Article  CAS  Google Scholar 

  • Bowden CL, Karren NU (2006) Anticonvulsants in bipolar disorder. Aust NZ J Psychiatry 40:386–393

    Article  Google Scholar 

  • Chen G, Manji HK (2006) The extracellular signal-regulated kinase pathway: an emerging promising target for mood stabilizers. Curr Opin Psychiatry 19:313–323

    Article  PubMed  Google Scholar 

  • Coenen AM, van Luijtelaar EL (1985) Stress induced by three procedures of deprivation of paradoxical sleep. Physiol Behav 35:501–504

    Article  PubMed  CAS  Google Scholar 

  • Du J, Gray NA, Falke C, Yuan P, Szabo S, Manji HK (2003) Structurally dissimilar antimanic agents modulate synaptic plasticity by regulating AMPA glutamate receptor subunit GluR1 synaptic expression. Ann NY Acad Sci 1003:378–380

    Article  PubMed  CAS  Google Scholar 

  • Einat H, Yuan P, Gould TD et al (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311–7316

    PubMed  CAS  Google Scholar 

  • Fratta W, Collu M, Martellotta MC, Pichiri M, Muntoni F, Gessa GL (1987) Stress-induced insomnia: opioid–dopamine interactions. Eur J Pharmacol 3:437–440

    Article  Google Scholar 

  • Frau R, Orrù M, Puligheddu M et al (2008) Sleep deprivation disrupts prepulse inhibition of the startle reflex: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 11:947–955

    Article  PubMed  CAS  Google Scholar 

  • Frey BN, Valvassori SS, Réus GZ et al (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed  Google Scholar 

  • Gessa GL, Pani L, FrattaW SG (1995a) Depression and mania: from neurobiology to treatment. Raven, New York

    Google Scholar 

  • Gessa GL, Pani L, Fadda P, Fratta W (1995b) Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol 5:S89–S93

    Article  Google Scholar 

  • Kanai H, Sawa A, Chen RW, Leeds P, Chuang DM (2004) Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J 4:336–344

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Dunah AW, Wang YT, Sheng M (2005) Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras–ERK signaling and AMPA receptor trafficking. Neuron 46:745–760

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Grover LM, Bertolotti D, Green TL (2010) Growth hormone rescues hippocampal synaptic function after sleep deprivation. Am J Physiol Regul Integr Comp Physiol 298:1588–1596

    Article  Google Scholar 

  • Lan MJ, McLoughlin GA, Griffin JL et al (2009) Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry 14:269–279

    Article  PubMed  CAS  Google Scholar 

  • Martin ED, Pozo MA (2004) Valproate reduced excitatory postsynaptic currents in hippocampal CA1 pyramidal neurons. Neuropharmacology 46:555–561

    Article  PubMed  CAS  Google Scholar 

  • McDermott CM, Hardy MN, Bazan NG, Magee JC (2006) Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol 570:553–565

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah HA, Ketter TA, Kalali AH (2006) Carbamazepine and valproate for the treatment of bipolar disorder: a review of the literature. J Affect Disord 95:69–78

    Article  PubMed  CAS  Google Scholar 

  • Rao JS, Harry GJ, Rapoport SI, Kim HW (2010) Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 15:384–392

    Article  PubMed  CAS  Google Scholar 

  • Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437

    Article  PubMed  CAS  Google Scholar 

  • Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  PubMed  CAS  Google Scholar 

  • Yuan P, Zhou R, Wang Y et al (2010) Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J Affect Disord 124:164–169

    Article  PubMed  CAS  Google Scholar 

  • Zeise ML, Kasparow S, Zieglgansberger W (1991) Valproate suppresses N-methyl-d-aspartate-evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 544:345–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009–0073950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.J., Kang, W.S., Paik, J.W. et al. Effect of Valproic Acid Through Regulation of NMDA Receptor–ERK Signaling in Sleep Deprivation Rats. J Mol Neurosci 47, 554–558 (2012). https://doi.org/10.1007/s12031-011-9673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9673-5

Keywords

Navigation