Skip to main content

Advertisement

Log in

Molecular Alterations Associated with the NMDA Preconditioning-Induced Neuroprotective Mechanism Against Glutamate Cytotoxicity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Exposure of the brain to sub-lethal concentrations of glutamate activates, through stimulation of the glutamate N-methyl-d-aspartate (NMDA) receptors, an endogenous brain protective mechanism (NMDA preconditioning) against glutamate cytotoxicity and various other injurious stimuli. Selective drug activation of this mechanism is considered to be a promising neuroprotective treatment against the devastating consequences of stroke and other traumatic brain insults. Although some properties of this mechanism have been characterized, many aspects concerning it are yet to be elucidated. In order to improve our understanding of the NMDA preconditioning mechanism, we have established an experimental in vitro model of primary rat neuronal cultures, in which NMDA preconditioning completely abolishes the glutamic acid insult-induced neuronal damage. Employing this model, we have monitored in the present study the level of activation or expression of several signal transducing proteins, assumed to be involved in the NMDA-activated protective mechanism, at various time points during the three successive periods of the model, preconditioning, insult, and reperfusion. The results demonstrated that the NMDA preconditioning-induced neuroprotective mechanism is associated with inactivation of p66ShcA, prevention of the insult-induced inactivation of Src, activation of AKT, inactivation followed by reactivation of FKHR-L1, and with increased expression of p52ShcA, EGFR, and MnSOD. The essential role of Src activity in the protective mechanism was further indicated by the demonstration that decreasing Src activation level by the Src inhibitor PP2 attenuated the NMDA preconditioning-induced protection. The alterations detailed above in the activation status or level of expression of the studied proteins are suggested to be part of the NMDA preconditioning-induced neuroprotective mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arany I, Faisal A, Nagamine Y, Safirstein RL (2008) p66shc inhibits pro-survival epidermal growth factor receptor/ERK signaling during severe oxidative stress in mouse renal proximal tubule cells. J Biol Chem 283:6110–6117

    Article  PubMed  CAS  Google Scholar 

  • Benter IF, Juggi JS, Khan I, Yousif MH, Canatan H, Akhtar S (2005) Signal transduction mechanisms involved in cardiac preconditioning: role of Ras-GTPase, Ca2+/calmodulin-dependent protein kinase II and epidermal growth factor receptor. Mol Cell Biochem 268:175–183

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brazel CY, Nunez JL, Yang Z, Levison SW (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131:55–65

    Article  PubMed  CAS  Google Scholar 

  • Brosh S, Sperling O, Bromberg Y, Sidi Y (1990) Developmental changes in the activity of enzymes of purine metabolism in rat neuronal cells in culture and in whole brain. J Neurochem 54:1776–1781

    Article  PubMed  CAS  Google Scholar 

  • Carpi A, Menabo R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M (2009) The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta 1787:774–780

    Article  PubMed  CAS  Google Scholar 

  • Chazot PL, Godukhin OV, McDonald A, Obrenovitch TP (2002) Spreading depression-induced preconditioning in the mouse cortex: differential changes in the protein expression of ionotropic nicotinic acetylcholine and glutamate receptors. J Neurochem 83:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Kim HY, Cha JH, Lee MY (2006) Ischemic preconditioning-induced activation of ERK1/2 in the rat hippocampus. Neurosci Lett 409:187–191

    Article  PubMed  CAS  Google Scholar 

  • Dawn B, Takano H, Tang XL, Kodani E et al (2002) Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 283:H549–H556

    PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19:1657–1662

    PubMed  CAS  Google Scholar 

  • Guo J, Gertsberg Z, Ozgen N, Steinberg SF (2009) p66Shc links alpha1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res 104:660–669

    Article  PubMed  CAS  Google Scholar 

  • Haga S, Terui K, Fukai M et al (2008) Preventing hypoxia/reoxygenation damage to hepatocytes by p66(shc) ablation: up-regulation of anti-oxidant and anti-apoptotic proteins. J Hepatol 48:422–432

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  • Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6:787–799

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Kang C, Philp RJ, Li B (2007) PKC delta phosphorylates p52ShcA at Ser29 to regulate ERK activation in response to H2O2. Cell Signal 19:410–418

    Article  PubMed  CAS  Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int 45:583–595

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa Y, Miura T, Nakano A et al (2004) The role of ADAM protease in the tyrosine kinase-mediated trigger mechanism of ischemic preconditioning. Cardiovasc Res 62:167–175

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  • Kontos HA (1989) Oxygen radicals in CNS damage. Chem Biol Interact 72:229–255

    Article  PubMed  CAS  Google Scholar 

  • Le S, Connors TJ, Maroney AC (2001) c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. J Biol Chem 276:48332–48336

    PubMed  CAS  Google Scholar 

  • Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC (2004) Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 100:532–539

    Article  PubMed  CAS  Google Scholar 

  • Marini AM, Paul SM (1992) N-methyl-d-aspartate receptor-mediated neuroprotection in cerebellar granule cells requires new RNA and protein synthesis. Proc Natl Acad Sci USA 89:6555–6559

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    Article  PubMed  CAS  Google Scholar 

  • Melchiorri D, Cappuccio I, Ciceroni C et al (2007) Metabotropic glutamate receptors in stem/progenitor cells. Neuropharmacology 53:473–480

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio E, Mele S, Salcini AE et al (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16:706–716

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  PubMed  CAS  Google Scholar 

  • Miguel F, Augusto AC, Gurgueira SA (2009) Effect of acute vs chronic H2O2-induced oxidative stress on antioxidant enzyme activities. Free Radic Res 43:340–347

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Murphy AN, Brown JH (2009) Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 41:169–180

    Article  PubMed  CAS  Google Scholar 

  • Navon H, Bromberg Y, Sperling O, Shani E (2011) Neuroprotection by NMDA preconditioning against glutamate cytotoxicity is mediated through activation of ERK 1/2, inactivation of JNK, and by prevention of glutamate-induced CREB inactivation. J Mol Neurosci (in press)

  • Okada S, Kao AW, Ceresa BP, Blaikie P, Margolis B, Pessin JE (1997) The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-stimulated mitogen-activated protein kinase pathway. J Biol Chem 272:28042–28049

    Article  PubMed  CAS  Google Scholar 

  • Otani H (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal 6:449–469

    Article  PubMed  CAS  Google Scholar 

  • Otani H (2008) Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 10:207–247

    Article  PubMed  CAS  Google Scholar 

  • Papadia S, Hardingham GE (2007) The dichotomy of NMDA receptor signaling. Neuroscientist 13:572–579

    PubMed  CAS  Google Scholar 

  • Pellegrini M, Pacini S, Baldari CT (2005) p66SHC: the apoptotic side of Shc proteins. Apoptosis 10:13–18

    Article  PubMed  CAS  Google Scholar 

  • Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11–31

    Article  PubMed  CAS  Google Scholar 

  • Purdom S, Chen QM (2003) p66(Shc): at the crossroad of oxidative stress and the genetics of aging. Trends Mol Med 9:206–210

    Article  PubMed  CAS  Google Scholar 

  • Ravati A, Ahlemeyer B, Becker A, Krieglstein J (2000) Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res 866:23–32

    Article  PubMed  CAS  Google Scholar 

  • Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90

    Article  PubMed  CAS  Google Scholar 

  • Salt TE, Eaton SA (1996) Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog Neurobiol 48:55–72

    Article  PubMed  CAS  Google Scholar 

  • Seifert G, Steinhauser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299

    Article  PubMed  CAS  Google Scholar 

  • Shani V, Bromberg Y, Sperling O, Zoref-Shani E (2009) Involvement of Src tyrosine kinases (SFKs) and of focal adhesion kinase (FAK) in the injurious mechanism in rat primary neuronal cultures exposed to chemical ischemia. J Mol Neurosci 37:50–59

    Article  PubMed  CAS  Google Scholar 

  • Tiberi L, Faisal A, Rossi M, Di Tella L, Franceschi C, Salvioli S (2006) p66(Shc) gene has a pro-apoptotic role in human cell lines and it is activated by a p53-independent pathway. Biochem Biophys Res Commun 342:503–508

    Article  PubMed  CAS  Google Scholar 

  • Xifro X, Falluel-Morel A, Miñano A et al (2006) N-methyl-d-aspartate blocks activation of JNK and mitochondrial apoptotic pathway induced by potassium deprivation in cerebellar granule cells. J Biol Chem 281:6801–6812

    Article  PubMed  CAS  Google Scholar 

  • Zhang FX, Rubin R, Rooney TA (1998) N-methyl-d-aspartate inhibits apoptosis through activation of phosphatidylinositol 3-kinase in cerebellar granule neurons. A role for insulin receptor substrate-1 in the neurotrophic action of N-methyl-d-aspartate and its inhibition by ethanol. J Biol Chem 273:26596–26602

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Wu X, Strauss KI et al (2005) N-methyl-d-aspartate and TrkB receptors protect neurons against glutamate excitotoxicity through an extracellular signal-regulated kinase pathway. J Neurosci Res 80:104–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by the Herman Shouder Research Fund, Sackler Faculty of Medicine, Tel-Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Zoref-Shani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sragovich, S., Bromberg, Y., Sperling, O. et al. Molecular Alterations Associated with the NMDA Preconditioning-Induced Neuroprotective Mechanism Against Glutamate Cytotoxicity. J Mol Neurosci 47, 519–532 (2012). https://doi.org/10.1007/s12031-011-9668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9668-2

Keywords

Navigation