Skip to main content
Log in

Interkinetic Nuclear Movement in the Ventricular Zone of the Cortex

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The nuclei of neuroepithelial cells move along the apicobasal axis in synchronization with their cell cycle status. This motility is known as interkinetic nuclear movement. We discuss here the importance of cytoskeleton organization, the centrosome, molecular motors, cell polarity proteins, and their regulators in controlling and maintaining this typical behavior. Furthermore, due to the tight linkage between cell proliferation, cell cycle, and nuclear motility, we speculate that interkinetic nuclear movement is likely to be affected in the pathophysiology of microcephaly, where the brain size is markedly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkuraya FS, Cai X, Emery C, Mochida GH, Al-Dosari MS, Felie JM, Hill RS, Barry BJ, Partlow JN, Gascon GG, Kentab A, Jan M, Shaheen R, Feng Y, Walsh CA (2011) Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am J Hum Genet 88(5):536–547

    Article  PubMed  CAS  Google Scholar 

  • Bahi-Buisson N, Poirier K, Boddaert N, Saillour Y, Castelnau L, Philip N, Buyse G, Villard L, Joriot S, Marret S, Bourgeois M, Van Esch H, Lagae L, Amiel J, Hertz-Pannier L, Roubertie A, Rivier F, Pinard JM, Beldjord C, Chelly J (2008) Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 45:647–653

    Article  PubMed  CAS  Google Scholar 

  • Bakircioglu M et al (2011) The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 88:523–535

    Article  PubMed  CAS  Google Scholar 

  • Baye LM, Link BA (2007) Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J Neurosci 27:10143–10152

    Article  PubMed  CAS  Google Scholar 

  • Bi W et al (2009) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41:168–177

    Article  PubMed  CAS  Google Scholar 

  • Bittman K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044

    PubMed  CAS  Google Scholar 

  • Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18:95–101

    Article  PubMed  CAS  Google Scholar 

  • Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG (2002) ASPM is a major determinant of cerebral cortical size. Nat Genet 32(2):316–320

    Google Scholar 

  • Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG (2005) A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 37:353–355

    Article  PubMed  CAS  Google Scholar 

  • Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH (2010) Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66:386–402

    Article  PubMed  CAS  Google Scholar 

  • Bultje RS, Castaneda-Castellanos DR, Jan LY, Jan YN, Kriegstein AR, Shi SH (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63:189–202

    Article  PubMed  CAS  Google Scholar 

  • Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini M, von Holst A, Shmueli O, Sapir T, McConnell SK, Wurst W, Martinez S, Reiner O (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci U S A 98:6429–6434

    Article  PubMed  CAS  Google Scholar 

  • Caspi M, Atlas R, Kantor A, Sapir T, Reiner O (2000) Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum Mol Genet 9:2205–2213

    PubMed  CAS  Google Scholar 

  • Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liao G, Yang L, Campbell K, Nakafuku M, Kuan CY, Zheng Y (2006) Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc Natl Acad Sci U S A 103:16520–16525

    Article  PubMed  CAS  Google Scholar 

  • Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641

    Article  PubMed  CAS  Google Scholar 

  • Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369

    Article  PubMed  CAS  Google Scholar 

  • Chenn A, Walsh CA (2003) Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb Cortex 13:599–606

    Article  PubMed  Google Scholar 

  • Chenn A, Zhang YA, Chang BT, McConnell SK (1998) Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci 11:183–193

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Jackson AP, Bond J, Woods CG (2006) What primary microcephaly can tell us about brain growth. Trends Mol Med 12:358–366

    Article  PubMed  CAS  Google Scholar 

  • Del Bene F, Wehman AM, Link BA, Baier H (2008) Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134:1055–1065

    Article  PubMed  Google Scholar 

  • Elias LA, Kriegstein AR (2008) Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci 31:243–250

    Article  PubMed  CAS  Google Scholar 

  • Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129:455–466

    PubMed  CAS  Google Scholar 

  • Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44:279–293

    Article  PubMed  CAS  Google Scholar 

  • Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. PNAS 103:10438–10443

    Google Scholar 

  • Frade JM (2002) Interkinetic nuclear movement in the vertebrate neuroepithelium: encounters with an old acquaintance. Prog Brain Res 136:67–71

    Article  PubMed  Google Scholar 

  • Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Gambello MJ, Darling DL, Yingling J, Tanaka T, Gleeson JG, Wynshaw-Boris A (2003) Multiple dose-dependent effects of Lis1 on cerebral cortical development. J Neurosci 23:1719–1729

    PubMed  CAS  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  • Griffith E, Walker S, Martin CA, Vagnarelli P, Stiff T, Vernay B, Al Sanna N, Saggar A, Hamel B, Earnshaw WC, Jeggo PA, Jackson AP, O'Driscoll M (2008) Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat Genet 40:232–236

    Article  PubMed  CAS  Google Scholar 

  • Guernsey DL et al (2010) Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet 87:40–51

    Article  PubMed  CAS  Google Scholar 

  • Gul A, Hassan MJ, Hussain S, Raza SI, Chishti MS, Ahmad W (2006) A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly. J Hum Genet 51:760–764

    Article  PubMed  CAS  Google Scholar 

  • Hannes FD, Sharp AJ, Mefford HC, de Ravel T, Ruivenkamp CA, Breuning MH, Fryns JP, Devriendt K, Van Buggenhout G, Vogels A, Stewart H, Hennekam RC, Cooper GM, Regan R, Knight SJ, Eichler EE, Vermeesch JR (2009) Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet 46:223–232

    Article  PubMed  CAS  Google Scholar 

  • Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Gotz M (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133:3245–3254

    Article  PubMed  CAS  Google Scholar 

  • Hayes NL, Nowakowski RS (2000) Exploiting the dynamics of S-phase tracers in developing brain: interkinetic nuclear migration for cells entering vs leaving the S-phase. Dev Neurosci 22:44–55

    Article  PubMed  CAS  Google Scholar 

  • Hebbar S, Mesngon MT, Guillotte AM, Desai B, Ayala R, Smith DS (2008) Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J Cell Biol 182:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Huttner WB, Kosodo Y (2005) Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol 17:648–657

    Article  PubMed  CAS  Google Scholar 

  • Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, Noguchi S, Sasaoka T, Noda T, Ohno S (2006) Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133:1735–1744

    Article  PubMed  CAS  Google Scholar 

  • Ivaniutsin U, Chen Y, Mason JO, Price DJ, Pratt T (2009) Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex. Neural Dev 4:3

    Article  PubMed  Google Scholar 

  • Kallen B (1962) Mitotic patterning in the central nervous system of chick embryos; studied by a colchicine method. Zeitschrift fur Anatomie und Entwicklungsgeschichte 123:309–319

    Article  Google Scholar 

  • Karfunkel P (1972) The activity of microtubules and microfilaments in neurulation in the chick. J Exp Zool 181:289–301

    Article  PubMed  CAS  Google Scholar 

  • Kosodo Y, Suetsugu T, Suda M, Mimori-Kiyosue Y, Toida K, Baba SA, Kimura A, Matsuzaki F (2011) Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J 30:1690–1704

    Article  PubMed  CAS  Google Scholar 

  • Kumar JP, Moses K (2001) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104:687–697

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Girimaji SC, Duvvari MR, Blanton SH (2009) Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet 84:286–290

    Article  PubMed  CAS  Google Scholar 

  • Latasa MJ, Cisneros E, Frade JM (2009) Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis. Int J Dev Biol 53:895–908

    Article  PubMed  CAS  Google Scholar 

  • Ligon LA, Karki S, Tokito M, Holzbaur EL (2001) Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol 3:913–917

    Article  PubMed  CAS  Google Scholar 

  • LoTurco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252:563–566

    Article  CAS  Google Scholar 

  • Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S (2003) Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122:129–143

    Article  PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    PubMed  CAS  Google Scholar 

  • Messier PE, Auclair C (1973) Inhibition of nuclear migration in the absence of microtubules in the chick embryo. J Embryol Exp Morphol 30:661–671

    PubMed  CAS  Google Scholar 

  • Messier PE, Auclair C (1974) Effect of cytochalasin B on interkinetic nuclear migration in the chick embryo. Dev Biol 36:218–223

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145

    Article  PubMed  CAS  Google Scholar 

  • Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449:351–355

    Article  PubMed  CAS  Google Scholar 

  • Morris-Rosendahl DJ, Najm J, Lachmeijer AM, Sztriha L, Martins M, Kuechler A, Haug V, Zeschnigk C, Martin P, Santos M, Vasconcelos C, Omran H, Kraus U, Van der Knaap MS, Schuierer G, Kutsche K, Uyanik G (2008) Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 74:425–433

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AK, Khurshid M, Desir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG (2010) WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 42:1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    Article  PubMed  Google Scholar 

  • Norden C, Young S, Link BA, Harris WA (2009) Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138:1195–1208

    Article  PubMed  CAS  Google Scholar 

  • Ochiai W, Minobe S, Ogawa M, Miyata T (2007) Transformation of pin-like ventricular zone cells into cortical neurons. Neurosci Res 57:326–329

    Article  PubMed  Google Scholar 

  • O'Driscoll M, Jackson AP, Jeggo PA (2006) Microcephalin: a causal link between impaired damage response signalling and microcephaly. Cell Cycle 5:2339–2344

    Article  PubMed  Google Scholar 

  • Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A 99:2020–2025

    Article  PubMed  CAS  Google Scholar 

  • Paramasivam M, Chang YJ, LoTurco JJ (2007) ASPM and citron kinase co-localize to the midbody ring during cytokinesis. Cell Cycle 6:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pawlisz AS, Mutch C, Wynshaw-Boris A, Chenn A, Walsh CA, Feng Y (2008) Lis1-Nde1 dependent neuronal fate control determines cerebral cortical size and lamination. Hum Mol Genet 17(16):2441–2455

    Article  PubMed  CAS  Google Scholar 

  • Pearson RA, Luneborg NL, Becker DL, Mobbs P (2005) Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 25:10803–10814

    Article  PubMed  CAS  Google Scholar 

  • Pramparo T, Youn YH, Yingling J, Hirotsune S, Wynshaw-Boris A (2010) Novel embryonic neuronal migration and proliferation defects in Dcx mutant mice are exacerbated by Lis1 reduction. J Neurosci 30:3002–3012

    Article  PubMed  CAS  Google Scholar 

  • Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827

    Article  PubMed  CAS  Google Scholar 

  • Rivas RJ, Hatten ME (1995) Motility and cytoskeletal organization of migrating cerebellar granule neurons. J Neurosci 15:981–989

    PubMed  CAS  Google Scholar 

  • Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Article  Google Scholar 

  • Sauer F (1936) The interkinetic migration of embryonic epithelial nuclei. J Morphol 60:1–11

    Article  Google Scholar 

  • Sauer ME, Walker BE (1959) Radioautographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560

    PubMed  CAS  Google Scholar 

  • Schaper A (1897) The earliest differentiatian in the central nervous system of the vertebrates. Science 5:430–431

    Google Scholar 

  • Schenk J, Wilsch-Brauninger M, Calegari F, Huttner WB (2009) Myosin II is required for interkinetic nuclear migration of neural progenitors. Proc Natl Acad Sci U S A 106:16487–16492

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Zhong W, Jan YN, Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129:4843–4853

    PubMed  CAS  Google Scholar 

  • Shimada M, Komatsu K (2009) Emerging connection between centrosome and DNA repair machinery. J Radiat Res (Tokyo) 50:295–301

    Article  CAS  Google Scholar 

  • Shu T, Tseng HC, Sapir T, Stern P, Zhou Y, Sanada K, Fischer A, Coquelle FM, Reiner O, Tsai LH (2006) Doublecortin-like kinase controls neurogenesis by regulating mitotic spindles and M phase progression. Neuron 49:25–39

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL, Miale IL, Feder N (1959) Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333

    Article  PubMed  CAS  Google Scholar 

  • Silver DL, Watkins-Chow DE, Schreck KC, Pierfelice TJ, Larson DM, Burnetti AJ, Liaw HJ, Myung K, Walsh CA, Gaiano N, Pavan WJ (2010) The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat Neurosci 13:551–558

    Article  PubMed  CAS  Google Scholar 

  • Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF (2010) Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 30:7028–7036

    Article  PubMed  CAS  Google Scholar 

  • Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Ann Rev Cell Dev Biol 26:421–444

    Article  CAS  Google Scholar 

  • Stocker AM, Chenn A (2009) Focal reduction of alphaE-catenin causes premature differentiation and reduction of beta-catenin signaling during cortical development. Dev Biol 328:66–77

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15:6046–6057

    PubMed  CAS  Google Scholar 

  • Tamai H, Shinohara H, Miyata T, Saito K, Nishizawa Y, Nomura T, Osumi N (2007) Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes Cells 12:983–996

    Article  PubMed  CAS  Google Scholar 

  • Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, Neumann LM, Krebs A, Reis A, Sperling K, Neitzel H, Jackson AP (2004) Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 75:261–266

    Article  PubMed  CAS  Google Scholar 

  • Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170:935–945

    Article  PubMed  CAS  Google Scholar 

  • Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10:970–979

    Article  PubMed  CAS  Google Scholar 

  • Tsai JW, Lian WN, Kemal S, Kriegstein AR, Vallee RB (2010) Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 13:1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K (2006) Cell cycle progression is required for nuclear migration of neural progenitor cells. Brain Res 1088:57–67

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955

    Article  PubMed  CAS  Google Scholar 

  • Watterson RL, Veneziano P, Bartha A (1956) Absence of a true germinal zone in neural tubes of young chick embryos as demonstrated by the colchicine technique. Anat Rec 124:379

    Google Scholar 

  • Webster W, Langman J (1978) The effect of cytochalasin B on the neuroepithelial cells of the mouse embryo. Am J Anat 152:209–221

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Sanada K, Samuels BA, Shih H, Tsai LH (2003) Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114:469–482

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Moy LY, Sanada K, Zhou Y, Buchman JJ, Tsai LH (2007) Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56:79–93

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Lee J, Stern DF (2004) Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279:34091–34094

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    Article  PubMed  CAS  Google Scholar 

  • Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008) Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132:474–486

    Article  PubMed  CAS  Google Scholar 

  • Yoon KJ, Koo BK, Im SK, Jeong HW, Ghim J, Kwon MC, Moon JS, Miyata T, Kong YY (2008) Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58:519–531

    Article  PubMed  CAS  Google Scholar 

  • Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, Topcu M, McDonald MT, Barry BJ, Felie JM, Sunu C, Dobyns WB, Folkerth RD, Barkovich AJ, Walsh CA (2010) Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 42:1015–1020

    Article  PubMed  CAS  Google Scholar 

  • Zechner D, Fujita Y, Hulsken J, Muller T, Walther I, Taketo MM, Crenshaw EB 3rd, Birchmeier W, Birchmeier C (2003) beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 258:406–418

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the current and previous lab members for their contributions. O.R. is an incumbent of the Berstein-Mason professorial chair of Neurochemistry. Our research has been supported in part by the Israel Science Foundation (grant no. 47/10), BSF grant 2007081, the Legacy Heritage Biomedical Program of the Israel Science Foundation (grant no. 1062/08), Minerva foundation with funding from the Federal German Ministry for Education and Research, ERANET-NEURON (DISCover, IMOS 3-00000-6785), the Benoziyo Center for Neurological diseases, the Helen and Martin Kimmel Stem Cell Research Institute, and the David and Fela Shapell Family Center for Genetic Disorders Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Reiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, O., Sapir, T. & Gerlitz, G. Interkinetic Nuclear Movement in the Ventricular Zone of the Cortex. J Mol Neurosci 46, 516–526 (2012). https://doi.org/10.1007/s12031-011-9633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9633-0

Keywords

Navigation