Skip to main content

Advertisement

Log in

Circulating Extracellular Proteasome in the Cerebrospinal Fluid: A Study on Concentration and Proteolytic Activity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alterations of the intracellular ubiquitin–proteasome pathway are found in neurodegenerative and inflammatory disorders of the central nervous system, as well as in its malignancies. Inhibitory substrates of the proteasomes represent promising approaches to control autoimmune inflammations and induction of apoptosis in cancer cells. Extracellular circulating proteasomes are positively correlated to outcome prognosis in hematogenic neoplasias and the outcome in critically ill patients. Previously, we reported raised levels of proteolytic active 20S proteasomes in the extracellular alveolar space in patients with acute respiratory distress syndrome (ARDS). For the cerebrospinal fluid, we assumed that extracellular circulating proteasomes with enzymatic activity can be found, too. Cerebrospinal fluid (CSF) samples of twenty-six patients (14 females, 12 males), who underwent diagnostic spinal myelography, were analyzed for leukocyte cell count, total protein content, lactate and interleukine-6 (Il-6) concentrations. CSF samples were analyzed for concentration and enzymatic activity of extracellular 20S proteasomes (fluorescenic substrate cleavage; femtokatal). Blood samples were analyzed with respect to concentration of extracellular circulating proteasomes. Choroidal plexus was harvested at autopsies and examined with immunoelectron microscopy (EM) for identification of possible transportation mechanisms. Statistical analysis was performed using SPSS (18.0.3). In all patients, extracellular proteasome was found in the CSF. The mean concentration was 24.6 ng/ml. Enzymatic activity of the 20S subunits of proteasomes was positively identified by the fluorescenic subtrate cleavage at a mean of 8.5 fkat/ml. Concentrations of extracellular proteasomes in the CSF, total protein content and Il-6 were uncorrelated. Immunoelectron microscopy revealed merging vesicles of proteasomes with the outer cell membrane suggestive of an exozytic transport mechanism. For the first time, extracellular circulating 20S proteasome in the CSF of healthy individuals is identified and its enzymatic activity detected. A possible exozytic vesicle-bond transportation mechanism is suggested by immunoelectron microscopy. The present study raises more questions on the function of extracellular proteasome in the CSF and encourages further studies on the role of extracellular protesomes in pathological conditions of the central nervous system (tumor lesions and inflammatory processes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Diagram 1
Diagram 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andonian S, Jarvi K, Zini A, Hermo L (2002) Ultrastructural features of the vas deferens from patients undergoing vasectomy and vasectomy reversal. J Androl 23(5):691–701

    PubMed  Google Scholar 

  • Bachmann HS, Novotny J, Sixt S et al (2010) The G-allele of the PSMA6-8C > G polymorphism is associated with poor outcome in multiple myeloma independently of circulating proteasome serum levels. Eur J Haematol 85(2):108–113

    PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380

    Article  PubMed  CAS  Google Scholar 

  • Beyer NH, Milthers J, Bonde Lauridsen AM, Houen G, Lautrup Frederiksen J (2007) Autoantibodies to the proteasome in monosymptomatic optic neuritis may predict progression to multiple sclerosis. Scand J Clin Lab Invest 67(7):696–706

    Article  PubMed  CAS  Google Scholar 

  • Borissenko L, Groll M (2007) 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107(3):687–717

    Article  PubMed  CAS  Google Scholar 

  • Brancolini C (2008) Inhibitors of the ubiquitin–proteasome system and the cell death machinery: how many pathways are activated? Curr Mol Pharmacol 1(1):24–37

    Article  PubMed  CAS  Google Scholar 

  • Cecarini V, Ding Q, Keller JN (2007) Oxidative inactivation of the proteasome in Alzheimer’s disease. Free Radic Res 41(6):673–680

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (1998) The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J 17(24):7151–7160

    Article  PubMed  CAS  Google Scholar 

  • Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7(2):265–272

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • Dahlmann B, Ruppert T, Kloetzel PM, Kuehn L (2001) Subtypes of 20S proteasomes from skeletal muscle. Biochimie 83(3–4):295–299

    Article  PubMed  CAS  Google Scholar 

  • Dang LC, Melandri FD, Stein RL (1998) Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37(7):1868–1879

    Article  PubMed  CAS  Google Scholar 

  • Dutaud D, Aubry L, Henry L et al (2002) Development and evaluation of a sandwich ELISA for quantification of the 20S proteasome in human plasma. J Immunol Methods 260(1–2):183–193

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Mori I, Kitano S (1983) Color reaction between pyrogallol re-molybdenum (VI) complex and protein. Bunseki Kagaku 32:E379–E386

    Article  CAS  Google Scholar 

  • Gaczynska M, Rock KL, Goldberg AL (1993) Role of proteasomes in antigen presentation. Enzyme Protein 47(4–6):354–369

    PubMed  CAS  Google Scholar 

  • Gaspar N, Sharp SY, Eccles SA et al (2010) Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma. Mol Cancer Ther 9(5):1219–1233

    Article  PubMed  CAS  Google Scholar 

  • Gillardon F, Kloss A, Berg M et al (2007) The 20S proteasome isolated from Alzheimer’s disease brain shows post-translational modifications but unchanged proteolytic activity. J Neurochem 101(6):1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    PubMed  CAS  Google Scholar 

  • Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35(Pt 1):12–17

    PubMed  CAS  Google Scholar 

  • Goodale RL, Goetzman B, Visscher MB (1970) Hypoxia and iodoacetic acid and alveolocapillary barrier permeability to albumin. Am J Physiol 219(5):1226–1230

    PubMed  CAS  Google Scholar 

  • Grimm LM, Osborne BA (1999) Apoptosis and the proteasome. Results Probl Cell Differ 23:209–228

    PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471

    Article  PubMed  CAS  Google Scholar 

  • Guillaume B, Chapiro J, Stroobant V et al (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107(43):18599–18604

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21(3):96–102

    PubMed  CAS  Google Scholar 

  • Jakob C, Egerer K, Liebisch P et al (2007) Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma. Blood 109(5):2100–2105

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24(1):8–11

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19(8):415–417

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Markesbery WR (2000) Proteasome inhibition results in increased poly-ADP-ribosylation: implications for neuron death. J Neurosci Res 61(4):436–442

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000a) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000b) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113(1):61–70

    Article  PubMed  CAS  Google Scholar 

  • King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274(5293):1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita M, Hamakubo T, Fukui I, Murachi T, Toyohara H (1990) Significant amount of multicatalytic proteinase identified on membrane from human erythrocyte. J Biochem 107(3):440–444

    PubMed  CAS  Google Scholar 

  • Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8):739–758

    Article  PubMed  CAS  Google Scholar 

  • Kloss A, Henklein P, Siele D et al (2009) The cell-penetrating peptide octa-arginine is a potent inhibitor of proteasome activities. Eur J Pharm Biopharm 72(1):219–225

    Article  PubMed  CAS  Google Scholar 

  • Kopp F, Hendil KB, Dahlmann B, Kristensen P, Sobek A, Uerkvitz W (1997) Subunit arrangement in the human 20S proteasome. Proc Natl Acad Sci USA 94(7):2939–2944

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533–539

    Article  PubMed  CAS  Google Scholar 

  • Ludwig H, Khayat D, Giaccone G, Facon T (2005) Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 104(9):1794–1807

    Article  PubMed  CAS  Google Scholar 

  • Mayo I, Arribas J, Villoslada P et al (2002) The proteasome is a major autoantigen in multiple sclerosis. Brain 125(Pt 12):2658–2667

    Article  PubMed  Google Scholar 

  • Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96(18):10403–10408

    Article  PubMed  CAS  Google Scholar 

  • Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6(8):607–614

    Article  PubMed  CAS  Google Scholar 

  • Niedermann G, King G, Butz S et al (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93(16):8572–8577

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Borgstrom P, Witkiewicz H et al (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25(3):327–337

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, McNaught KS (2006) Ubiquitin–proteasome system and Parkinson’s disease. Mov Disord 21(11):1806–1823

    Article  PubMed  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8(3):185–194

    Article  PubMed  CAS  Google Scholar 

  • Roth GA, Moser B, Krenn C et al (2005) Heightened levels of circulating 20S proteasome in critically ill patients. Eur J Clin Invest 35(6):399–403

    Article  PubMed  CAS  Google Scholar 

  • Schoch B, Regel JP, Nierhaus A et al (2008) Predictive value of intrathecal interleukin-6 for ventriculostomy-related Infection. Zentralbl Neurochir 69(2):80–86

    Article  PubMed  CAS  Google Scholar 

  • Sixt SU, Dahlmann B (2008) Extracellular, circulating proteasomes and ubiquitin - incidence and relevance. Biochim Biophys Acta 1782(12):817–823

    PubMed  CAS  Google Scholar 

  • Sixt SU, Peters J (2010) Extracellular alveolar proteasome: possible role in lung injury and repair. Proc Am Thorac Soc 7(1):91–96

    Article  PubMed  Google Scholar 

  • Sixt SU, Beiderlinden M, Jennissen HP, Peters J (2007) Extracellular proteasome in the human alveolar space: a new housekeeping enzyme? Am J Physiol Lung Cell Mol Physiol 292(5):L1280–L1288

    Article  PubMed  CAS  Google Scholar 

  • Sixt SU, Adamzik M, Spyrka D et al (2009) Alveolar extracellular 20S proteasome in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 179(12):1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Stein RL, Melandri F, Dick L (1996) Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry 35(13):3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Thuy-Tien H, Haugen M, Aarseth J, Storstein A, Vedeler CA (2008) Proteasome antibodies in patients with cancer or multiple sclerosis. Scand J Immunol 67(4):400–403

    Article  PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Yousef AA, Suliman GA, Mabrouk MM (2010) The value of correlation of serum 20S proteasome concentration and percentage of lymphocytic apoptosis in critically ill patients: a prospective observational study. Crit Care 14(6):R215

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors appreciate the excellent technical assistance of G. Ladwig with the immunoelectron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, O., Anlasik, T., Wiedemann, J. et al. Circulating Extracellular Proteasome in the Cerebrospinal Fluid: A Study on Concentration and Proteolytic Activity. J Mol Neurosci 46, 509–515 (2012). https://doi.org/10.1007/s12031-011-9631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9631-2

Keywords

Navigation