Skip to main content

Advertisement

Log in

Mitochondrial Dysfunction as a Therapeutic Target in Progressive Supranuclear Palsy

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Progressive supranuclear palsy (PSP) is a sporadic and progressive neurodegenerative disease, most often leading to a symmetric, akinetic-rigid syndrome with prominent postural instability, vertical supranuclear gaze palsy, and cognitive decline. It belongs to the family of tauopathies and involves both cortical and subcortical structures. There is evidence from laboratory as well as in vivo studies suggesting that mitochondrial energy metabolism is impaired in PSP. Furthermore, several findings suggest that a failure in mitochondrial energy production might act as an upstream event in the chain of pathological events leading to the aggregation of tau and neuronal cell death. Agents targeting mitochondrial dysfunction have already shown a positive effect in a phase II study; however, further studies to verify these results need to be conducted. This review will focus on the pathophysiological concept of mitochondrial dysfunction in PSP and its possible role as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdin AA, Hamouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without l-dopa in rotenone-induced Parkinsonism. Neuropharmacology 55:1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW (2008) Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131:460–472

    Article  PubMed  Google Scholar 

  • Albers DS, Augood SJ, Martin DM, Standaert DG, Vonsattel JP, Beal MF (1999) Evidence for oxidative stress in the subthalamic nucleus in PSP. J Neurochem 73:881–884

    Article  PubMed  CAS  Google Scholar 

  • Albers DS, Swerdlow RH, Manfredi G et al (2001) Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp Neurol 168:196–198

    Article  PubMed  CAS  Google Scholar 

  • Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 103:8864–8869

    Article  PubMed  Google Scholar 

  • Bresolin N, Bet L, Binda A et al (1988) Clinical and biochemical correlations in mitochondrial myopathies treated with coenzyme Q10. Neurology 38:892–899

    PubMed  CAS  Google Scholar 

  • Burn DJ, Sawle GV, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatr 57:278–284

    Article  PubMed  CAS  Google Scholar 

  • Cantuti-Castelvetri I, Keller-McGandy CE, Albers DS et al (2002) Expression and activity of antioxidants in the brain in progressive supranuclear palsy. Brain Res 930:170–181

    Article  PubMed  CAS  Google Scholar 

  • Caparros-Lefebvre D, Elbaz A (1999) Possible relation of atypical Parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet 354:281–286

    Article  PubMed  CAS  Google Scholar 

  • Champy P, Höglinger GU, Feger J et al (2004) Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical Parkinsonism in Guadeloupe. J Neurochem 88:63–69

    Article  PubMed  CAS  Google Scholar 

  • Chirichigno JW, Manfredi G, Beal MF, Albers DS (2002) Stress-induced mitochondrial depolarization and oxidative damage in PSP cybrids. Brain Res 951:31–35

    Article  PubMed  CAS  Google Scholar 

  • Cleren C, Yang L, Lorenzo B et al (2008) Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem 104:1613–1621

    Article  PubMed  CAS  Google Scholar 

  • Davey GP, Canevari L, Clark JB (1997) Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J Neurochem 69:2564–2570

    Article  PubMed  CAS  Google Scholar 

  • Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage 46:530–541

    Article  PubMed  Google Scholar 

  • Dexter DT, Jenner P, Schapira AH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32:94–100

    Article  Google Scholar 

  • Di Monte DA, Harati Y, Jankovic J, Sandy MS, Jewell SA, Langston JW (1994) Muscle mitochondrial ATP production in progressive supranuclear palsy. J Neurochem 62:1631–1634

    Article  PubMed  Google Scholar 

  • Divinski I, Mittelman L, Gozes I (2004) A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 279:28531–28538

    Article  PubMed  CAS  Google Scholar 

  • Divinski I, Holtser-Cochav M, Vulih-Schultzman I, Steingart RA, Gozes I (2006) Peptide neuroprotection through specific interaction with brain tubulin. J Neurochem 98:973–984

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB. A Frontal Assessment Battery at bedside. Neurology 55:1621–1626

    PubMed  CAS  Google Scholar 

  • Escobar-Khondiker M, Höllerhage M, Muriel MP et al (2007) Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 27:7827–7837

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gomez FJ, Pastor MD, Garcia-Martinez EM et al (2006) Pyruvate protects cerebellar granular cells from 6-hydroxydopamine induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression. Neurobiol Dis 24:296–307

    Article  PubMed  CAS  Google Scholar 

  • Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA (1988) Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 24:399–406

    Article  PubMed  CAS  Google Scholar 

  • Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. Am J Neuroradiol 30:1222–1226

    Article  PubMed  CAS  Google Scholar 

  • Glenn OA, Henry RG, Berman JI et al (2003) DTI-based three-dimensional tractography detects differences in the pyramidal tracts of infants and children with congenital hemiparesis. J Magn Reson Imag 18:641–648

    Article  Google Scholar 

  • Golbe LI (1997) A clinical rating scale and staging system for progressive supranuclear palsy. Neurology 48(Suppl):A326

    Google Scholar 

  • Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565

    Article  PubMed  Google Scholar 

  • Gozes I (2010a) Davunetide (NAP) pharmacology: neuroprotection and tau. In: Martinez A (ed) Emerging drugs and targets for Alzheimer’s disease. Royal Society of Chemistry, Cambridge, pp 108–128

    Chapter  Google Scholar 

  • Gozes I (2010b) Tau pathology and future therapeutics. Curr Alzheimer Res 7:685–696

    Article  PubMed  CAS  Google Scholar 

  • Gozes I, Stewart A, Morimoto B, Fox A, Sutherland K, Schmeche D (2009) Addressing Alzheimer’s disease tangles: from NAP to AL-108. Curr Alzheimer Res 6:455–460

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Cooper JM, Taanman JW, Schapira AHV (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186

    Article  PubMed  CAS  Google Scholar 

  • Hauw JJ, Daniel SE, Dickson D et al (1994) Preliminary NINDS neuropathologic criteria for Steele–Richardson–Olszewski syndrome (progressive supranuclear palsy). Neurology 44:2015–2019

    PubMed  CAS  Google Scholar 

  • Höglinger GU, Ferger J, Prigent A et al (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502

    Article  PubMed  Google Scholar 

  • Höglinger GU, Lannuzel A, Escobar-Khondiker M et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95:930–939

    Article  PubMed  Google Scholar 

  • Höllerhage M, Matusch A, Champy P et al (2009) Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol 220:133–142

    Article  PubMed  Google Scholar 

  • Iqbal K, Alonso Adel C, Grundke-Iqbal I (2008) Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis 14:365–370

    PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:161–170

    Google Scholar 

  • Knake S, Salat DH, Halgren E, Halko M, Greve DN, Grant PE (2009) Changes in white matter microstructure and patients with temporal lobe epilepsy due to hippocampal sclerosis. Epileptic Disord 11:244–250

    PubMed  Google Scholar 

  • Knake S, Belke M, Menzler K et al (2010) In vivo demonstration of microstructural brain pathology in progressive supranuclear palsy: a DTI study using TBSS. Mov Disord 25:1232–1238

    Article  PubMed  Google Scholar 

  • Lagendijk J, Ubbink JB, Vermaak WJ (1996) Measurement of the ratio between the reduced and oxidized forms of coenzyme Q10 in human plasma as a possible marker of oxidative stress. J Lipid Res 37:67–75

    PubMed  CAS  Google Scholar 

  • Lannuzel A, Michel PP, Höglinger GU et al (2003) The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121:287–296

    Article  PubMed  CAS  Google Scholar 

  • Lannuzel A, Höglinger GU, Verhaeghe S et al (2007) Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes? Brain 130:816–827

    Article  PubMed  Google Scholar 

  • Lee VM, Kenyon TK, Trojanowski JQ (2005) Transgenic animal models of tauopathies. Biochim Biophys Acta 1739:251–259

    PubMed  CAS  Google Scholar 

  • Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006) Mitochondrial complex I: structural and functional aspects. Biochim Biophys Acta 1757:1406–1420

    Article  PubMed  CAS  Google Scholar 

  • Litvan I, Agid Y, Calne D et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9

    PubMed  CAS  Google Scholar 

  • Lodi R, Hart PE, Rajagopalan B et al (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49:590–596

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Yang L, Jenkins BG et al (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163

    PubMed  CAS  Google Scholar 

  • Matthews RT, Ferrante RJ, Klivenyi P et al (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149

    Article  PubMed  CAS  Google Scholar 

  • Menke T, Gille G, Reber F et al (2003) Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors 18:65–72

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M et al (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri MAA (2007) N-Acetylaspartate in the CNS: from Neurodiagnostics to Neurobiology. Prog Neurobiol 81:89–131

    Article  PubMed  CAS  Google Scholar 

  • Moon Y, Lee KH, Park JH, Geum D, Kim K (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 93:1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Odetti P, Garibaldi S, Norese R et al (2000) Lipoperoxidation is selectively involved in progressive supranuclear palsy. J Neuropathol Exp Neurol 59:393–397

    PubMed  CAS  Google Scholar 

  • Parker WD, Boyson SJ, Parks JK (1989) Electron transport chain abnormalities in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  • Pastor P, Pastor E, Carnero C et al (2001) Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol 49:263–267

    Article  PubMed  CAS  Google Scholar 

  • Poorkaj P, Muma NA, Zhukareva V et al (2002) An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol 52:511–516

    Article  PubMed  Google Scholar 

  • Rango M, Arighi A, Biondetti P et al (2007) Magnetic resonance spectroscopy in Parkinson’s disease and Parkinsonian syndromes. Funct Neurol 22:75–79

    PubMed  Google Scholar 

  • Ros R, Thobois S, Streichenberger N et al (2005) A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. Arch Neurol 62:1444–1450

    Article  PubMed  Google Scholar 

  • Rossi G, Gasparoli E, Pasquali C et al (2004) Progressive supranuclear palsy and Parkinson’s disease in a family with a new mutation in the tau gene. Ann Neurol 55:448–449

    Article  PubMed  CAS  Google Scholar 

  • Salat DH, Tuch DS, Hevelone ND et al (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 1064:37–49

    Article  PubMed  CAS  Google Scholar 

  • Salat DH, Tuch DS, van der Kouwe AJ et al (2010) White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging 31:244–256

    Article  PubMed  CAS  Google Scholar 

  • Santens P, De Reuck J, Crevits L et al (1997) Cerebral oxygen metabolism in patients with progressive supranuclear palsy: a positron emission tomography study. Eur Neurol 37:18–22

    Article  PubMed  CAS  Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1289

    Google Scholar 

  • Shults CW, Oakes D, Kieburtz K et al (2002) Effects of coenzyme Q10 in early Parkinson disease. Evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  PubMed  Google Scholar 

  • Sian J, Dexter DT, Lees AJ et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  • Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436

    Article  PubMed  Google Scholar 

  • Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage 20:1714–1722

    Article  PubMed  Google Scholar 

  • Stamelou M, Reuss A, Pilatus U et al (2008) Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 23:942–949

    Article  PubMed  Google Scholar 

  • Stamelou M, Pilatus U, Reuss A et al (2009) In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab 29:861–870

    Article  PubMed  CAS  Google Scholar 

  • Stanford PM, Halliday GM, Brooks WS et al (2000) Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene. Expansion of the disease phenotype caused by tau gene mutations. Brain 123:880–893

    Article  PubMed  Google Scholar 

  • Sullivan PG, Geiger JD, Mattson MP, Scheff SW (2000) Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 48:723–729

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Miller SW et al (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Davis JN et al (1998) Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 44:873–881

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH, Golbe LI, Parks JK et al (2000) Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J Neurochem 75:1681–1684

    Article  PubMed  CAS  Google Scholar 

  • van Balken I, Litvan I (2006) Current and future treatments in progressive supranuclear palsy. Curr Treat Options Neurol 8:211–223

    Article  PubMed  Google Scholar 

  • Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH (2007) Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 1132:1–9

    Article  PubMed  CAS  Google Scholar 

  • Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279

    Article  PubMed  Google Scholar 

  • Zemlyak I, Sapolsky R, Gozes I (2009a) NAP protects against cytochrome c release: inhibition of the initiation of apoptosis. Eur J Pharmacol 618:9–14

    Article  PubMed  CAS  Google Scholar 

  • Zemlyak I, Sapolsky R, Gozes I (2009b) NAP protects against cyanide-related microtubule destruction. J Neural Transm 116:1411–1416

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Maiti A, Shively S et al (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter U. Höglinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ries, V., Oertel, W.H. & Höglinger, G.U. Mitochondrial Dysfunction as a Therapeutic Target in Progressive Supranuclear Palsy. J Mol Neurosci 45, 684–689 (2011). https://doi.org/10.1007/s12031-011-9606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9606-3

Keywords

Navigation