Skip to main content

Advertisement

Log in

Implication of CCR2 Chemokine Receptor in Cocaine-Induced Sensitization

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cocaine-induced sensitization induces long-term neuroplastic changes in the striatum. Among these, extracellular signal-regulated kinase (ERK) is a fundamental component in striatal gene and epigenetic regulation and plays an important role in reward processes. As previous studies suggested that the chemokine CCL2 enhanced striatal dopamine release and as its cognate CCR2 receptor was located in brain structures implicated in cocaine reward, we tested the hypothesis that CCR2/CCL2 could be involved in cocaine-induced behavioral response. We used CCR2 knockout mice (CCR2−/−) and studied two crucial steps in cocaine sensitization: locomotor activity in sensitized mice and ERK activation in the striatum. We show that locomotor sensitization is significantly reduced in CCR2−/− mice as well as the dopamine transporter regulation and the cocaine-induced p-ERK striatal activation. Taken together, our results suggest that CCR2 receptor is involved in cocaine sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Banisadr G, Quéraud-Lesaux F, Boutterin MC et al (2002) Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brain. J Neurochem 81:257–269

    Article  PubMed  CAS  Google Scholar 

  • Callewaere C, Fernette B, Raison D et al (2008) Cellular and subcellular evidence for neuronal interaction between the chemokine stromal cell-derived factor-1/CXCL 12 and vasopressin: regulation in the hypothalamo-neurohypophysial system of the Brattleboro rats. Endocrinology 149(1):310–319

    Article  PubMed  CAS  Google Scholar 

  • Chalon S, Emond P, Bodard S et al (1999) Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson’s disease. Synapse 31:134–139

    Article  PubMed  CAS  Google Scholar 

  • Corbillé AG, Valjent E, Marsicano G et al (2007) Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. J Neurosci 27:6937–6947

    Article  PubMed  Google Scholar 

  • Dhillon NK, Peng F, Bokhari S et al (2008) Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol 3:52–56

    Article  PubMed  Google Scholar 

  • Dubois PM, Palmer D, Webb ML, Ledbetter JA, Shapiro RA (1996) Early signal transduction by the receptor to the chemokine monocyte chemotactic protein-1 in a murine T cell hybrid. J Immunol 156:1356–1361

    PubMed  CAS  Google Scholar 

  • Gosselin RD, Varela C, Banisadr G et al (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Guyon A, Skrzydelski D, De Giry I et al (2009) Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience 162:1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Ikegami D, Narita M, Imai S et al (2010) Epigenetic modulation at the CCR2 gene correlates with the maintenance of behavioral sensitization to methamphetamine. Addict Biol 15:358–361

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Sainz MC, Fast B, Mayor F, Aragay AM (2003) Signaling pathways for monocyte chemoattractant protein 1-mediated extracellular signal-regulated kinase activation. Mol Pharmacol 64:773–782

    Article  PubMed  CAS  Google Scholar 

  • Kuziel WA, Morgan SJ, Dawson TC, Smithies S, Ley K, Maeda N (1997) Severe reduction in leukocyte adhesion and monocyte expression deficient in CC chemokine recepteur 2. PNAS 28:12053–12058

    Article  Google Scholar 

  • Mahajan SD, Schwartz SA, Aalinkeel R, Chawda RP, Sykes DE, Nair MP (2005) Morphine modulates chemokine gene regulation in normal human astrocytes. Clin Immunol 115:323–332

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Rostene W, Apartis E et al (2008) Chemokine action in the nervous system. J Neurosci 12:11792–11795

    Article  Google Scholar 

  • Rostène W, Kitabgi P, Melik-Parsadaniantz S (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8:895–903

    Article  PubMed  Google Scholar 

  • Skrzydelski D, Guyon A, Daugé V et al (2007) The chemokine stromal cell-derived factor-1/CXCL12 activates the nigrostriatal dopamine system. J Neurochem 102:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  PubMed  CAS  Google Scholar 

  • Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Brit J Pharmacol 154:327–342

    Article  CAS  Google Scholar 

  • Valjent E, Aubier B, Corbille AG et al (2006) Plasticity-associated gene krox24/zif268 is required for long-lasting behavioral effects of cocaine. J Neurosci 26:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Yang Y, Kim KJ et al (2010) Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 115:4951–4962

    Article  PubMed  CAS  Google Scholar 

  • Zahniser NR, Sorkin A (2004) Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology 47:80–91

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Looney D, Taub D et al (1998) Cocaine opens the blood–brain barrier to HIV-1 invasion. J Neurovirol 4:619–626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Institut National de la Sante et de la Recherche Medicale (INSERM) and by grants from Fondation de France and Association France Parkinson. The authors would like to thank Pierre Casanova for his precious help in the animal facility, Patricia Mechighel and Lucette Gareau for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Marc Trocello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trocello, J.M., Rostene, W., Melik-Parsadaniantz, S. et al. Implication of CCR2 Chemokine Receptor in Cocaine-Induced Sensitization. J Mol Neurosci 44, 147–151 (2011). https://doi.org/10.1007/s12031-011-9508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9508-4

Keywords

Navigation