Skip to main content

Advertisement

Log in

Activity-Dependent Neuroprotective Protein (ADNP) Expression in the Amyloid Precursor Protein/Presenilin 1 Mouse Model of Alzheimer’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A major determinant in the pathogenesis of Alzheimer’s disease (AD) is the deposition of β-amyloid (Aβ) peptides in specific areas of the central nervous system. Therefore, animal models of Alzheimer amyloidosis are excellent tools to identify candidates to facilitate drug screening and to understand the molecular pathology of AD. Activity-dependent neuroprotective protein (ADNP) plays an essential role in brain development, and NAP (NAPVSIPQ, generic name: davunetide)—a peptide derived from ADNP—is currently in clinical development for the treatment of neurodegenerative disorders. However, the link between ADNP expression and AD remains unexplored. To test whether ADNP is affected by the onset of AD and progression, we employed the PS1xAPP mouse model (PS1M146L × APP751SL transgenic mice) to analyze the mRNA expression of ADNP in the hippocampus and cerebellum in early and advanced stages of disease. Results showed that ADNP expression in 6-month-old PS1xAPP mice hippocampus was higher than in wild-type (WT) mice. ADNP was originally identified as a vasoactive intestinal peptide (VIP)-responsive gene taking part in the VIP-mediated neurotrophic pathway. Interestingly, the expression of VIP was not affected in the same experimental setting, suggesting that ADNP expression is a VIP-independent marker associated with AD. Moreover, in the cerebellum, a brain area not affected by Aβ deposition, ADNP mRNA expression in 6-month-old PS1xAPP and WT were not different. A similar extent of hippocampal ADNP expression was observed in 18-month-old WT and PS1xAPP mice, in contrast to the differential expression level at 6 months of age. However, hippocampal ADNP expression in both WT and PS1xAPP was increased with aging similar to VIP mRNA expression. Our findings support the hypothesis that ADNP expression is related to early or mild AD progression by a VIP-independent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  • Abbott A (2008) Neuroscience: the plaque plan. Nature 456:161–164

    Article  CAS  PubMed  Google Scholar 

  • Adalbert R, Gilley J, Coleman MP (2007) Abeta, Tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol Med 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Alcalay RN, Giladi E, Pick CG, Gozes I (2004) Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett 361:128–131

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Moroji T, Kosaka K (1984) Somatostatin and vasoactive intestinal polypeptide in postmortem brains from patients with Alzheimer-type dementia. Neurosci Lett 52:73–78

    Article  CAS  PubMed  Google Scholar 

  • Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D (2008) Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med 12:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Barten DM, Albright CF (2008) Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 37:171–186

    Article  CAS  PubMed  Google Scholar 

  • Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O et al (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem 72:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Blanchard V, Moussaoui S, Czech C, Touchet N, Bonici B, Planche M et al (2003) Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp Neurol 184:247–263

    Article  CAS  PubMed  Google Scholar 

  • Branca S, Bennati E, Ferlito L, Spallina G, Cardillo E, Malaguarnera M et al (2009) The health-care in the extreme longevity. Arch Gerontol Geriatr 49:32–34

    Article  PubMed  Google Scholar 

  • Castellani RJ, Lee HG, Zhu X, Perry G, Smith MA (2008) Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol 67:523–531

    Article  CAS  PubMed  Google Scholar 

  • Divinski I, Mittelman L, Gozes I (2004) A femtomolar-acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 279:28531–28538

    Article  CAS  PubMed  Google Scholar 

  • Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med 12:762–780

    Article  CAS  PubMed  Google Scholar 

  • Friedrich MJ (2008) Alzheimer researchers focus efforts on early development and earlier detection. J Am Med Assoc 300:2595–2597

    Article  CAS  Google Scholar 

  • Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544

    Article  PubMed  Google Scholar 

  • Gozes I (2007) Activity-dependent neuroprotective protein: from gene to drug candidate. Pharmacol Ther 114:146–154

    Article  CAS  PubMed  Google Scholar 

  • Gozes I (2008) VIP, from gene to behavior and back: summarizing my 25 years of research. J Mol Neurosci 36:115–124

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Schachter P, Shani Y, Giladi E (1988) Vasoactive intestinal peptide gene expression from embryos to aging rats. Neuroendocrinology 47:27–31

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 293:1091–1098

    CAS  PubMed  Google Scholar 

  • Gozes I, Stewart A, Morimoto B, Fox A, Sutherland K, Schmeche D (2009) Addressing Alzheimer’s disease tangles: from NAP to AL-108. Curr Alzheimer Res (in press)

  • Helzner EP, Scarmeas N, Cosentino S, Tang MX, Schupf N, Stern Y (2008) Survival in Alzheimer disease: a multiethnic, population-based study of incident cases. Neurology 71:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Holtser-Cochav M, Divinski I, Gozes I (2006) Tubulin is the target binding site for nap-related peptides: ADNF-9, D-NAP, and D-SAL. J Mol Neurosci 28:303–307

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene IBA1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12:38–55

    Article  CAS  PubMed  Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R et al (2008) Inflammatory response in the hippocampus of PS1M146l/APP751sl mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  CAS  PubMed  Google Scholar 

  • Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E et al (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Rechavi G, Gozes I (2007) Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev Biol 303:814–824

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF et al (2008) A neuronal microtubule interacting agent, NAP, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 325:146–153

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167

    Article  CAS  PubMed  Google Scholar 

  • Pinhasov A, Mandel S, Torchinsky A, Giladi E, Pittel Z, Goldsweig AM et al (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res Dev Brain Res 144:83–90

    Article  CAS  PubMed  Google Scholar 

  • Poggi SH, Vink J, Goodwin K, Hill JM, Brenneman DE, Pinhasov A et al (2002) Differential expression of embryonic and maternal activity-dependent neuroprotective protein during mouse development. Am J Obstet Gynecol 187:973–976

    Article  CAS  PubMed  Google Scholar 

  • Popescu BO (2007) Still debating a cause and diagnostic criteria for Alzheimer’s disease. J Cell Mol Med 11:1225–1226

    Article  PubMed  Google Scholar 

  • Quintana FJ, Zaltzman R, Fernandez-Montesinos R, Herrera JL, Gozes I, Cohen IR et al (2006) NAP, a peptide derived from the activity-dependent neuroprotective protein, modulates macrophage function. Ann N Y Acad Sci 1070:500–506

    Article  CAS  PubMed  Google Scholar 

  • Stewart AJ, Fox A, Morimoto BH, Gozes I (2007) Looking for novel ways to treat the hallmarks of Alzheimer’s disease. Expert Opin Investig Drugs 16:1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Trouche S, Bontempi B, Roullet P, Rampon C (2009) Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci U S A 106:5919–5924

    Article  CAS  PubMed  Google Scholar 

  • Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 27:6771–6780

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF (2007) Decreased mt1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 28:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Zaltzman R, Alexandrovich A, Beni SM, Trembovler V, Shohami E, Gozes I (2004) Brain injury-dependent expression of activity-dependent neuroprotective protein. J Mol Neurosci 24:181–187

    Article  CAS  PubMed  Google Scholar 

  • Zaltzman R, Alexandrovich A, Trembovler V, Shohami E, Gozes I (2005) The influence of the peptide NAP on MAC-1-deficient mice following closed head injury. Peptides 26:1520–1527

    Article  CAS  PubMed  Google Scholar 

  • Zamostiano R, Pinhasov A, Gelber E, Steingart RA, Seroussi E, Giladi E et al (2001) Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem 276:708–714

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the Spanish Ministry of Health (PI052056 and PI061641 to D.P.; PI060567 to J.V.; PI060556 to A.G.). The D.P. laboratory is part of the national cooperative research network in multiple sclerosis RETIC-REEM, Spanish Ministry of Health. M.T., A.G., and J.V. are part of the Network Centre for Biomedical Research on Neurodegenerative Diseases (CIBERNED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pozo.

Additional information

Rafael Fernandez-Montesinos and Manuel Torres contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Montesinos, R., Torres, M., Baglietto-Vargas, D. et al. Activity-Dependent Neuroprotective Protein (ADNP) Expression in the Amyloid Precursor Protein/Presenilin 1 Mouse Model of Alzheimer’s Disease. J Mol Neurosci 41, 114–120 (2010). https://doi.org/10.1007/s12031-009-9300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9300-x

Keywords

Navigation