Skip to main content

Advertisement

Log in

Copper Enhances Amyloid-β Peptide Neurotoxicity and non β-Aggregation: A Series of Experiments Conducted upon Copper-Bound and Copper-Free Amyloid-β Peptide

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is characterized by the abnormal aggregation of amyloid-β peptide (Aβ) in extracellular deposits known as senile plaques. However, the nature of the toxic Aβ species and its precise mechanism of action remain unclear. Previous reports suggest that the histidine residues are involved in copper–Aβ interaction, by which resulting in the neurotoxicity of Aβ and free radical damage. Here, we employed a mutant Aβ (Aβ H13R) in which a histidine residue was replaced by arginine. Copper facilitated the precipitation of both wild-type and mutant Aβ in the spectrophotometric absorbance assay but suppressed β-structure aggregates according to Thioflavine-T assay. Wild-type Aβ alone is more cytotoxic but produced less amount of H2O2 than AβH13R–copper complexes, suggesting that Aβ–membrane interaction may also implicated in the pathologic progress. Aβ toxicity is in positive correlation to its competence to aggregate despite the aggregation is mainly composed of non-β fibril substances. In short, these findings may provide further evidence on the role of copper in the pathogenesis of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

amyloid-β peptide

APP:

amyloid precursor protein

SPs:

senile plaques

NFTs:

neurofibrillary tangles

CD:

circular dichroism

HFIP:

1,1,1,3,3,3-hexafluoro-2-propanol

ThT:

Thioflavine-T

DMEM:

Dulbecco’s modified Eagle’s medium

OD:

optical density

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

DMSO:

dimethyl sulfoxide

LDH:

lactate dehydrogenase

1340:

Aβ(1–40)H13R

WT Aβ40 :

wild-type Aβ (1–40)

References

  • Ali, F., Barnham, K., Barrow, C., & Separovic, F. (2004). Metal-catalyzed oxidative damage and oligomerization of the amyloid-beta peptide of Alzheimer’s disease. Aust J Chem, 57, 511–518.

    Article  CAS  Google Scholar 

  • Ali, F., Separovic, F., Barrow, C., Yao, S., & Barnham, K. (2006). Copper and Zinc Mediated Oligomerisation of Aβ Peptides. International Journal of Peptide Research and Therapeutics, 12, 153–164.

    Article  CAS  Google Scholar 

  • Atwood, C. S., Moir, R. D., Huang, X., et al. (1998). Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. Journal of Biological Chemistry, 273, 12817–12826.

    Article  CAS  PubMed  Google Scholar 

  • Atwood, C. S., Perry, G., Zeng, H., et al. (2004). Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry, 43, 560–568.

    Article  CAS  PubMed  Google Scholar 

  • Bush, A. I., Pettingell, W. H., Jr., Paradis, M. D., & Tanzi, R. E. (1994). Modulation of A beta adhesiveness and secretase site cleavage by zinc. Journal of Biological Chemistry, 269, 12152–12158.

    CAS  PubMed  Google Scholar 

  • Butterfield, D. A., & Boyd-Kimball, D. (2004). Amyloid beta-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathology, 14, 426–432.

    Article  CAS  PubMed  Google Scholar 

  • Butterfield, D. A., Reed, T., Newman, S. F., & Sultana, R. (2007). Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine, 43, 658–677.

    Article  CAS  PubMed  Google Scholar 

  • Cuajungco, M. P., Goldstein, L. E., Nunomura, A., et al. (2000). Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. Journal of Biological Chemistry, 275, 19439–19442.

    Article  CAS  PubMed  Google Scholar 

  • Dai, X. L., Sun, Y. X., & Jiang, Z. F. (2007). Attenuated cytotoxicity but enhanced betafibril of a mutant amyloid beta-peptide with a methionine to cysteine substitution. FEBS Letters, 581, 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  • Dikalov, S. I., Vitek, M. P., & Mason, R. P. (2004). Cupric-amyloid β peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radical Biology and Medicine, 36, 340–347.

    Article  CAS  PubMed  Google Scholar 

  • Dong, J., Atwood, C. S., Anderson, V. E., et al. (2003). Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry, 42, 2768–2773.

    Article  CAS  PubMed  Google Scholar 

  • Drake, J., Link, C. D., & Butterfield, D. A. (2003). Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid b-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging, 24, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Finder, V., & Glockshuber, R. (2007). Amyloid-beta aggregation. Neurodegenerative Dis, 4, 13–27.

    Article  CAS  Google Scholar 

  • Gupta, V. B., Indi, S. S., & Rao, K. S. J. (2008). Studies on the role of amino acid stereospecificity in amyloid beta aggregation. J Mol Neurosci, 34, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Molecular and Cellular Biology, 8, 101–112.

    CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., et al. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91, 3270–3274.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Atwood, C. S., Hartshorn, M. A., et al. (1999). The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 38, 7609–7616.

    Article  CAS  PubMed  Google Scholar 

  • Kourie, J. I. (2001). Mechanisms of amyloid beta protein-induced modification in ion transport systems: implications for neurodegenerative diseases. Cellular and Molecular Neurobiology, 21, 173–213.

    Article  CAS  PubMed  Google Scholar 

  • Lau, T. L., Ambroggio, E. E., Tew, D. J., et al. (2006). Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. Journal of Molecular Biology, 356, 759–770.

    Article  CAS  PubMed  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., et al. (2006). A specific amyloid beta protein assembly in the brain impairs memory. Nature, 440, 352–357.

    Article  CAS  PubMed  Google Scholar 

  • LeVine, H., 3rd. (1993). Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Science, 2, 404–410.

    CAS  PubMed  Google Scholar 

  • Lorenzo, A., & Yankner, B. A. (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences of the United States of America, 91, 12243–12247.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430, 631–639.

    Article  CAS  PubMed  Google Scholar 

  • McLean, C. A., Cherny, R. A., Fraser, F. W., et al. (1999). Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, S., & Nishida, Y. (2001). Oxygenation of amyloid beta-peptide (1–40) by copper(II) complex and hydrogen peroxide system. Inorganic Chemistry Communications, 4, 86–89.

    Article  CAS  Google Scholar 

  • Perczel, A., & Hollosi, M. (1996). In: Fasman GD (ed.). Circular dichroism and the conformational analysis of biomolecules. New York, Plenum Press.

  • Puglielli, L., Friedlich, A. L., Setchell, K. D., et al. (2005). Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. Journal of Clinical Investigation, 115, 2556–2563.

    Article  CAS  PubMed  Google Scholar 

  • Roychaudhuri, R., Yang, M., Hoshi, M. M., & Teplow, D. B. (2009). Amyloid beta-protein assembly and alzheimer disease. Journal of Biological Chemistry, 284, 4749–4753.

    Article  CAS  PubMed  Google Scholar 

  • Saad, B., Dakwar, S., Said, O., et al. (2006). Evaluation of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes. Evid Based Complement Alternat Med, 3, 93–98.

    Article  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. P., Smith, D. G., Curtain, C. C., et al. (2006). Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. Journal of Biological Chemistry, 281, 15145–15154.

    Article  CAS  PubMed  Google Scholar 

  • Squitti, R., Lupoi, D., Pasqualetti, P., et al. (2002). Elevation of serum copper levels in Alzheimer’s disease. Neurology, 59, 1153–1161.

    CAS  PubMed  Google Scholar 

  • Syme, C. D., & Viles, J. H. (2006). Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Abeta) of Alzheimer’s disease. Biochimica et Biophysica Acta, 1764, 246–256.

    CAS  PubMed  Google Scholar 

  • Syme, C. D., Nadal, R. C., Rigby, S. E., & Viles, J. H. (2004). Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1–28): insights from a range of complementary spectroscopic techniques. Journal of Biological Chemistry, 279, 18169–18177.

    Article  CAS  PubMed  Google Scholar 

  • Tickler, A., Smith, D., Ciccotosto, G., & Ciccotosto, G. (2005). Methylation of the imidazole side chains of the Alzheimer disease amyloid-beta peptide results in abolition of superoxide dismutaselike structures and inhibition of neurotoxicity. Journal of Biological Chemistry, 280, 13355–13363.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull, S., Tabner, B. J., El-Agnaf, O. M., Twyman, L. J., & Allsop, D. (2001). New evidence that the Alzheimer beta-amyloid peptide does not spontaneously form free radicals: an ESR study using a series of spin-traps. Free Radical Biology and Medicine, 30, 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, T., & Konietzko, U. (2008). Amyloid-beta immunisation for Alzheimer’s disease. Lancet Neurology, 7, 805–811.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. T., Wu, C.-S., & Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Meth Enzymol, 130, 208–269.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiike, Y., Tanemura, K., Murayama, O., et al. (2001). New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. Journal of Biological Chemistry, 276, 32293–32299.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Key Program of the Beijing Natural Science Foundation (Project No: KZ200311417015) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, PHR(IHLB) [PHR20090513].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X., Sun, Y., Gao, Z. et al. Copper Enhances Amyloid-β Peptide Neurotoxicity and non β-Aggregation: A Series of Experiments Conducted upon Copper-Bound and Copper-Free Amyloid-β Peptide. J Mol Neurosci 41, 66–73 (2010). https://doi.org/10.1007/s12031-009-9282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9282-8

Keywords

Navigation