Skip to main content
Log in

Functional Distribution of Nicotinic Receptors in CA3 Region of the Hippocampus

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptor (nAChR) modulation of a number of parameters of synaptic signaling in the brain has been demonstrated. It is likely that effects of nicotine are due to its ability to modulate network excitability as a whole. A pre-requisite to understanding the effects of nicotine on network properties is the elucidation of functional receptors. We have examined the distribution of functional nAChRs in the dentate gyrus granule cells and the CA3 region of the mammalian hippocampus using calcium imaging from acute slices. Our results demonstrate the presence of functional nAChRs containing the α7 subunit (α7-nAChRs) on mossy fiber boutons, CA3 pyramidal cells, and on astrocytes. In addition, both CA3 interneurons and granule cells show nicotinic signals. Our study suggests that functional nicotinic receptors are widespread in their distribution and that calcium imaging might be an effective technique to examine locations of these receptors in the mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alkondon, M., Rocha, E. S., Maelicke, A., & Albuquerque, E. X. (1996). Diversity of nicotinic acetylcholine receptors in rat brain. V. Alpha-bungarotoxin-sensitive nicotinic receptors in olfactory bulb neurons and presynaptic modulation of glutamate release. Journal of Pharmacology and Experimental Therapeutics, 278, 1460–1471.

    CAS  PubMed  Google Scholar 

  • Bainton, R. J., Tsai, L. T., Schwabe, T., DeSalvo, M., Gaul, U., & Heberlein, U. (2005). Moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell, 123, 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Berger, F., Gage, F. H., & Vijayaraghavan, S. (1998). Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. Journal of Neuroscience, 18, 6871–6881.

    CAS  PubMed  Google Scholar 

  • Bonfante-Cabarcas, R., Swanson, K. L., Alkondon, M., & Albuquerque, E. X. (1996). Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. IV. Regulation by external Ca++ of alpha-bungarotoxin- sensitive receptor function and of rectification induced by internal Mg++. Journal of Pharmacology and Experimental Therapeutics, 277, 432–444.

    CAS  PubMed  Google Scholar 

  • Dajas-Bailador, F. A., Lima, P. A., & Wonnacott, S. (2000). The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism. Neuropharmacology, 39, 2799–2807.

    Article  CAS  PubMed  Google Scholar 

  • Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P. G., & Carmignoto, G. (2004). Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 43, 729–743.

    Article  CAS  PubMed  Google Scholar 

  • Fellin, T., Pascual, O., & Haydon, P. G. (2006). Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology. (Bethesda.), 21, 208–215.

    CAS  Google Scholar 

  • Frazier, C. J., Strowbridge, B. W., & Papke, R. L. (2003). Nicotinic receptors on local circuit neurons in dentate gyrus: a potential role in regulation of granule cell excitability. Journal of Neurophysiology, 89, 3018–3028.

    Article  CAS  PubMed  Google Scholar 

  • Ghosheh, O. A., Dwoskin, L. P., Miller, D. K., & Crooks, P. A. (2001). Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2′(14)C]nicotine. Drug Metabolism and Disposition, 29, 645–651.

    CAS  PubMed  Google Scholar 

  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine [see comments]. Nature, 383, 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Haydon, P. G. (2001). GLIA: listening and talking to the synapse. Nature Reviews, Neuroscience, 2, 185–193.

    Article  CAS  Google Scholar 

  • Haydon, P. G., Blendy, J., Moss, S. J., & Rob, J. F. (2008). Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology, 56, 83–90.

    Article  PubMed  Google Scholar 

  • Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F., & London, E. D. (1993). Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug and Alcohol Dependence, 33, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Hu, M., Liu, Q., Chang, K. T., & Berg, D. K. (2002). Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Molecular and Cellular Neurosciences, 21, 616–625.

    Article  CAS  PubMed  Google Scholar 

  • Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31, 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Karczmar, A. G. (1993). Physiological cholinergic function in the CNS. In S.-M. Aquilonius & P. G. Gillberg (Eds.), Cholinergic neurotransmission: Functional and clinical aspects (pp. 437–466). Elsevier: Amsterdam.

    Google Scholar 

  • Khiroug, L., Giniatullin, R., Klein, R. C., Fayuk, D., & Yakel, J. L. (2003). Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. Journal of Neuroscience, 23, 9024–9031.

    CAS  PubMed  Google Scholar 

  • Klein, R. C., & Yakel, J. L. (2005). Paired-pulse potentiation of alpha7-containing nAChRs in rat hippocampal CA1 stratum radiatum interneurones. Journal of Physiology, 568, 881–889.

    Article  CAS  PubMed  Google Scholar 

  • Narahashi, T., Fenster, C. P., Quick, M. W., Lester, R. A., Marszalec, W., Aistrup, G. L., et al. (2000). Symposium overview: mechanism of action of nicotine on neuronal acetylcholine receptors, from molecule to behavior. Toxicological Sciences, 57, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe, K. A., Fisher, J. L., Gray, R., & Dani, J. A. (1999). Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Annals of the New York Academy of Sciences, 868, 591–610.

    Article  CAS  PubMed  Google Scholar 

  • Rezvani, A. H., & Levin, E. D. (2001). Cognitive effects of nicotine. Biological Psychiatry, 49, 258–267.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., & Vijayaraghavan, S. (2001). Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proceedings of the National Academy of Sciences of the United States of America, 98, 4148–4153.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., & Vijayaraghavan, S. (2002). Nicotinic receptor signaling in nonexcitable cells. Journal of Neurobiology, 53, 524–534.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., & Vijayaraghavan, S. (2003). Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron, 38, 929–939.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., & Vijayaraghavan, S. (2008). Nicotinic receptors containing the alpha7 subunit: a model for rational drug design. Current Medicinal Chemistry, 15, 2921–2932.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., Grybko, M., & Vijayaraghavan, S. (2008). Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. Journal of Neuroscience, 28, 2563–2575.

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan, S., Pugh, P. C., Zhang, Z. W., Rathouz, M. M., & Berg, D. K. (1992). Nicotinic receptors that bind alpha-bungarotoxin on neurons raise intracellular free Ca2+. Neuron, 8, 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Yeckel, M. F., Kapur, A., & Johnston, D. (1999). Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neuroscience, 2, 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Zarei, M. M., Radcliffe, K. A., Chen, D., Patrick, J. W., & Dani, J. A. (1999). Distributions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. Neuroscience, 88, 755–764.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. W., Vijayaraghavan, S., & Berg, D. K. (1994). Neuronal acetylcholine receptors that bind alpha-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron, 12, 167–177.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Institute for Drug Abuse (RO1 DA 10266), the National Institute of Deafness and Communication Disorders (RO1 DC 008855), and a Scientist Development Grant from the American Heart Association (GS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukumar Vijayaraghavan.

Additional information

Proceedings of the XIII International Symposium on Cholinergic Mechanisms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grybko, M., Sharma, G. & Vijayaraghavan, S. Functional Distribution of Nicotinic Receptors in CA3 Region of the Hippocampus. J Mol Neurosci 40, 114–120 (2010). https://doi.org/10.1007/s12031-009-9266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9266-8

Keywords

Navigation