Skip to main content

Advertisement

Log in

Interaction Between Cav2.1α1 and CaMKII in Cav2.1α1 Mutant Mice, Rolling Nagoya

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It has been reported earlier that interactions between Cav2.1α1 and calcium/calmodulin-dependent protein kinase II (CaMKII) in the presynaptic fraction and between the NMDA receptor subunit NR2B and CaMKII in the postsynaptic density (PSD) fraction are important for neuronal function. Cav2.1α1, CaMKII, and NR2B are predominantly expressed in the hippocampus. To examine the above interactions and CaMKII activity in the hippocampal presynapse and PSD of Rolling Nagoya mice carrying a mutation in Cav2.1α1 subunit, we performed immunoprecipitation and Western blot analyses. In the presynapse, the interaction between Cav2.1α1 and CaMKII and the phosphorylation of CaMKII (at Thr286) and its substrate Synapsin I (at Ser603) were decreased in mutant mice compared to wild-type mice. In the PSD, a similar pattern was observed for the interaction between NR2B and CaMKII and the phosphorylation of CaMKII (at Thr286) and its substrate AMPA receptor subunit glutamate receptor 1 (at Ser831) between mutant and wild-type mice. Our data indicate that disruption of the interaction between Cav2.1α1 and CaMKII may down-regulate presynaptic CaMKII activity and that Rolling Nagoya mice would be a useful model for examining presynaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Barria, A., & Malinow, R. (2005). NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron, 48, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W., & Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 411, 801–805.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology, 1, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Caddick, S. J., Wang, C., Fletcher, C. F., Jenkins, N. A., Copeland, N. G., & Hosford, D. A. (1999). Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1a(tg)) mouse thalami. Journal of Neurophysiology, 81, 2066–2074.

    CAS  PubMed  Google Scholar 

  • Catterall, W. A. (1999). Interactions of presynaptic calcium channels and snare proteins in neurotransmitter release. Annals of the New York Academy of Sciences, 868, 144–159.

    Article  CAS  PubMed  Google Scholar 

  • Colbran, R. J. (2004). Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. Journal of Neuroscience, 24, 8404–8409.

    Article  CAS  PubMed  Google Scholar 

  • Colbran, R. J., & Brown, A. M. (2004). Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Current Opinion in Neurobiology, 14, 318–327.

    Article  CAS  PubMed  Google Scholar 

  • Conti, A. C., Maas, J. W., Jr., Muglia, L. M., Dave, B. A., Vogt, S. K., Tran, T. T., et al. (2007). Distinct regional and subcellular localization of adenylyl cyclases type 1 and 8 in mouse brain. Neuroscience, 146, 713–729.

    Article  CAS  PubMed  Google Scholar 

  • Day, N. C., Shaw, P. J., McCormack, A. L., Craig, P. J., Smith, W., Beattie, R., et al. (1996). Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience, 71, 1013–1024.

    Article  CAS  PubMed  Google Scholar 

  • Elgersma, Y., Fedorov, N. B., Ikonen, S., Choi, E. S., Elgersma, M., Carvalho, O. M., et al. (2002). Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron, 36, 493–505.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, C. F., Lutz, C. M., O’Sullivan, T. N., Shaughnessy, J. D., Jr., Hawkepresynapserankel, W. N., Copeland, N. G., et al. (1996). Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell, 87, 607–617.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X., Lautermilch, N. J., Watari, H., Westenbroek, R. E., Scheuer, T., & Catterall, W. A. (2008). Modulation of Cav2.1 channels by calcium/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 105, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne, M. C., & Hell, J. W. (1999). Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the United States of America, 96, 3239–3244.

    Article  CAS  PubMed  Google Scholar 

  • Lisman, J., Schulman, H., & Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews Neuroscience, 3, 175–190.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. B., & Jones, E. G. (1996). Localization of alpha type II calcium/calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 7332–7336.

    Article  CAS  PubMed  Google Scholar 

  • Mich, P. M., & Horne, W. A. (2008). Alternative splicing of the calcium channel beta4 subunit confers specificity for gabapentin inhibition of Cav2.1 trafficking. Molecular Pharmacology, 74, 904–912.

    Article  CAS  PubMed  Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., et al. (1989). Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, 340, 230–233.

    Article  CAS  PubMed  Google Scholar 

  • Mintz, I. M., Sabatini, B. L., & Regehr, W. G. (1995). Calcium control of transmitter release at a cerebellar synapse. Neuron, 15, 675–688.

    Article  CAS  PubMed  Google Scholar 

  • Mori, Y., Friedrich, T., Kim, M. S., Mikami, A., Nakai, J., Ruth, P., et al. (1991). Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature, 350, 398–402.

    Article  CAS  PubMed  Google Scholar 

  • Mori, Y., Wakamori, M., Oda, S., Fletcher, C. F., Sekiguchi, N., Mori, E., et al. (2000). Reduced voltage sensitivity of activation of P/Q-type calcium channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). Journal of Neuroscience Online, 20, 5654–5662.

    CAS  PubMed  Google Scholar 

  • Nayak, A. S., Moore, C. I., & Browning, M. D. (1996). Calcium/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 93, 15451–15456.

    Article  CAS  PubMed  Google Scholar 

  • Oda, S. (1973). The observation of rolling mouse Nagoya (rol), a new neurological mutant, and its maintenance. Jikken Dobutsu, 22, 281–288.

    CAS  PubMed  Google Scholar 

  • Phillips, G. R., Huang, J. K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., et al. (2001). The presynaptic particle web: Ultrastructure, composition, dissolution, and reconstitution. Neuron, 32, 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Sandoz, G., Bichet, D., Cornet, V., Mori, Y., Felix, R., & De Waard, M. (2001). Distinct properties and differential beta subunit regulation of two C-terminal isoforms of the P/Q-type calcium channel alpha(1A) subunit. European Journal of Neuroscience, 14, 987–997.

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. J., Stevens, C. F., Tonegawa, S., & Wang, Y. (1992a). Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science, 257, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. M., & Tonegawa, S. (1992b). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 257, 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Slonimsky, J. D., Mattaliano, M. D., Moon, J. I., Griffith, L. C., & Birren, S. J. (2006). Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proceedings of the National Academy of Sciences of the United States of America, 103, 2915–2919.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, E., & Niimi, K. (2009). Spatial learning deficit in aged heterozygous Cav2.1 channel mutant mice, rolling mouse Nagoya. Experimental Gerontology, 44, 274–279.

    Article  CAS  PubMed  Google Scholar 

  • Tsui, J., Inagaki, M., & Schulman, H. (2005). Calcium/calmodulin-dependent protein kinase II (CaMKII) localization acts in concert with substrate targeting to create spatial restriction for phosphorylation. Journal of Biological Chemistry, 280, 9210–9216.

    Article  CAS  PubMed  Google Scholar 

  • Vendel, A. C., Terry, M. D., Striegel, A. R., Iverson, N. M., Leuranguer, V., Rithner, C. D., et al. (2006). Alternative splicing of the voltage-gated calcium channel beta4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. Journal of Neuroscience, 26, 2635–2644.

    Article  CAS  PubMed  Google Scholar 

  • Westenbroek, R. E., Sakurai, T., Elliott, E. M., Hell, J. W., Starr, T. V. B., Snutch, T. P., et al. (1995). Immunochemical identification and subcellular distribution of the alpha1A subunits of brain calcium channels. Journal of Neuroscience, 15, 6403–6418.

    CAS  PubMed  Google Scholar 

  • Wheeler, D. B., Randall, A., & Tsien, R. W. (1994). Roles of N-type and Q-type calcium channels in supporting hippocampal synaptic transmission. Science, 264, 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Takahashi, E., Li, W., Halt, A., Wiltgen, B., Ehninger, D., et al. (2007). Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. Journal of Neuroscience, 27, 13843–13853.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiki Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, E., Niimi, K. & Itakura, C. Interaction Between Cav2.1α1 and CaMKII in Cav2.1α1 Mutant Mice, Rolling Nagoya . J Mol Neurosci 41, 223–229 (2010). https://doi.org/10.1007/s12031-009-9216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9216-5

Keywords

Navigation