Skip to main content

Advertisement

Log in

Nitric Oxide Regulates Activity-Dependent Neuroprotective Protein (ADNP) in the Dentate Gyrus of the Rodent Model of Kainic Acid-Induced Seizure

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The dentate gyrus (DG) of the normal rat brain contains activity-dependent neuroprotective protein (ADNP) which is widely distributed in the cytoplasm of neurons and astrocytes. Treatment with nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) caused a decrease in ADNP expression in granule cells which persisted 3 days post-treatment. However, treatment with neuronal-specific NOS inhibitor, 7-nitroindazole (7-NI), or soluble guanylyl cyclase inhibitor, ODQ, did not change ADNP expression in the DG. We have previously shown that kainic acid (KA)-induced seizure increases neuronal NOS in neurons and inducible NOS in glia cells and suppresses ADNP in the hippocampus (Cosgrave et al., Neurobiol Dis 30(3):281–292, 2008). In the DG, l-NAME treatment prior to KA causes ADNP synthesis in granule cells by 3 h which was later restricted to the subgranular zone by 3 days. 7-NI and ODQ had no effect. Double immunostaining for neuronal marker NeuN and ADNP revealed a significant decrease of both ADNP+ neurons and of total neuron numbers (NeuN+) in the hilus of animals having KA-induced seizure that had been pretreated with l-NAME implying that NO and ADNP may act together to protect hilar neurons. Overall, these observations suggest that NO regulates ADNP in the DG under both basal and pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ADNP:

activity-dependent neuroprotective protein

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CA:

Cornu Ammonis

cGMP:

cyclic guanosine monophosphate

KA:

kainic acid

l-NAME:

NG-nitro-l-arginine methyl ester

MAPK:

mitogen-activated protein kinase

7-NI:

7-nitroindazole

NMDA:

N-methyl-d-aspartate

ODQ:

1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one

NO:

nitric oxide

nNOS:

neuronal NO synthase

qPCR:

quantitative polymerase chain reaction

sGC:

soluble guanylyl cyclase

SLM:

stratum lacunosum moleculare

SP:

stratum pyramidale

VIP:

vasoactive intestinal peptide

References

  • Akaneya, Y., Tsumoto, T., Kinoshita, S., & Hatanaka, H. (1997). Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. The Journal of Neuroscience, 17, 6707–6716.

    PubMed  CAS  Google Scholar 

  • Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22. doi:10.1016/S0079-6123(07)63001-5.

    Article  PubMed  Google Scholar 

  • Bassan, M., Zamostiano, R., Davidson, A., Pinhasov, A., Giladi, E., Perl, O., et al. (1999). Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. Journal of Neurochemistry, 72, 1283–1293. doi:10.1046/j.1471-4159.1999.0721283.x.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., & Cossart, R. (2000). Kainate, a double agent that generates seizures: two decades of progress. Trends in Neurosciences, 23, 580–587. doi:10.1016/S0166-2236(00)01659-3.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, E. H., Zhang, D. X., Mangan, P., Fountain, N., & Rempe, D. (1998). Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. Epilepsy Research, 32, 194–205. doi:10.1016/S0920-1211(98)00051-5.

    Article  PubMed  CAS  Google Scholar 

  • Binder, D. K. (2007). Neurotrophins in the dentate gyrus. Progress in Brain Research, 163, 371–397. doi:10.1016/S0079-6123(07)63022-2.

    Article  PubMed  CAS  Google Scholar 

  • Buckmaster, P. S., & Jongen-Rêlo, A. L. (1999). Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. The Journal of Neuroscience, 21, 9519–9529.

    Google Scholar 

  • Catania, M. V., Giuffrida, R., Seminara, G., Barbagallo, G., Aronica, E., Gorter, J. A., et al. (2003). Upregulation of neuronal nitric oxide synthase in in vitro stellate astrocytes and in vivo reactive astrocytes after electrically induced status epilepticus. Neurochemical Research, 28, 607–615. doi:10.1023/A:1022841911265.

    Article  PubMed  Google Scholar 

  • Chuang, Y. C., Chen, S. D., Lin, T. K., Liou, C. W., Chang, W. N., Chan, S. H., et al. (2007). Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat. Neuropharmacology, 52, 1263–1273. doi:10.1016/j.neuropharm.2007.01.010.

    Article  PubMed  CAS  Google Scholar 

  • Cole, A. J., Koh, S., & Zheng, Y. (2002). Are seizures harmful: what can we learn from animal models? Progress in Brain Research, 135, 13–23. doi:10.1016/S0079-6123(02)35004-0.

    Article  PubMed  Google Scholar 

  • Cosgrave, A. S., McKay, J. S., Bubb, V., Morris, R., Quinn, J. P., & Thippeswamy, T. (2008). Regulation of activity-dependent neuroprotective protein (ADNP) by the NO-cGMP pathway in the hippocampus during kainic acid-induced seizure. Neurobiology of Disease, 30(3), 281–292. doi:10.1016/j.nbd.2008.02.005.

    Article  PubMed  CAS  Google Scholar 

  • De Sarro, G., Di Paola, E. D., De Sarro, A., & Vidai, M. J. (1993). l-Arginine potentiates excitatory amino acid-induced seizures elicited in the deep prepiriform cortex. European Journal of Pharmacology, 230, 151–158. doi:10.1016/0014-2999(93)90797-L.

    Article  PubMed  Google Scholar 

  • Elliott, R. C., Miles, M. F., & Lowenstein, D. H. (2003). Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth. The Journal of Neuroscience, 23, 2218–2227.

    PubMed  CAS  Google Scholar 

  • Epsztein, J., Represa, A., Jorquera, I., Ben-Ari, Y., & Crepel, V. (2005). Recurrent mossy fibers establish aberrant kainate receptor operated synapses on granule cells from epileptic rats. The Journal of Neuroscience, 25, 8229–8239. doi:10.1523/JNEUROSCI.1469-05.2005.

    Article  PubMed  CAS  Google Scholar 

  • Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706–709. doi:10.1038/381706a0.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, C., Friguls, B., Sureda, F. X., Pallas, M., Planas, A. M., Escubedo, E., et al. (2000). Inhibitors of NO-synthase and donors of NO modulate kainic acid-induced damage in the rat hippocampus. Journal of Neuroscience Research, 59, 797–805. doi:10.1002/(SICI)1097-4547(20000315)59:6<797::AID-JNR12>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  • Gall, C. M., & Isackson, P. J. (1989). Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science, 245, 758–761. doi:10.1126/science.2549634.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., Garthwaite, G., Palmer, R. M., & Moncada, S. (1989). NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. European Journal of Pharmacology, 172, 413–416. doi:10.1016/0922-4106(89)90023-0.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk, W., Pozzo-Miller, L. D., Figurov, A., & Lu, B. (1998). Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. The Journal of Neuroscience, 18, 6830–6839.

    PubMed  CAS  Google Scholar 

  • Gozes, I. (2007). Activity-dependent neuroprotective protein: from gene to drug candidate. Pharmacology & Therapeutics, 114, 146–154. doi:10.1016/j.pharmthera.2007.01.004.

    Article  CAS  Google Scholar 

  • Gupta, R. C., & Dettbarn, W. D. (2003). Prevention of kainic acid seizures-induced changes in levels of nitric oxide and high-energy phosphates by 7-nitroindazole in rat brain regions. Brain Research, 981, 184–192. doi:10.1016/S0006-8993(03)03034-8.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, U., Beck, H., Dreier, J. P., Ficker, E., Stabel, J., & Zhang, C. L. (1992). The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Research. Supplement, 7, 273–280.

    PubMed  CAS  Google Scholar 

  • Jiao, Y., & Nadler, J. V. (2007). Stereological analysis of GluR2-immunoreactive hilar neurons in the pilocarpine model of temporal lobe epilepsy: correlation of cell loss with mossy fiber sprouting. Experimental Neurology, 205, 569–582. doi:10.1016/j.expneurol.2007.03.025.

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., Sato, S., Yokoyama, H., Kayama, T., & Yoshimura, T. (2005). Sequential changes of nitric oxide levels in the temporal lobes of kainic acid-treated mice following application of nitric oxide synthase inhibitors and phenobarbital. Epilepsy Research, 65, 81–91. doi:10.1016/j.eplepsyres.2005.05.001.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, K. M., Guebara-Guzman, R., de la Riva, C., Christensen, J., Fostergaard, K., & Emson, C. (1996). NMDA and kainate-evoked release of nitric oxide and classified transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role. The European Journal of Neuroscience, 8, 2619–2634. doi:10.1111/j.1460-9568.1996.tb01557.x.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. J., Joo, K. M., Chung, Y. H., Lee, Y. J., Kim, J., Lee, B. H., et al. (2003). Vasoactive intestinal peptide (VIP) and VIP mRNA decrease in the cerebral cortex of nNOS knock-out(−/−) mice. Brain Research, 978, 233–240. doi:10.1016/S0006-8993(03)02950-0.

    Article  PubMed  CAS  Google Scholar 

  • Kuruba, R., & Shetty, A. K. (2007). Could hippocampal neurogenesis be a future drug target for treating temporal lobe epilepsy? CNS & Neurological Disorders—Drug Targets, 5, 342–357. doi:10.2174/187152707783220884.

    Article  Google Scholar 

  • Lähteinen, S., Pitkänen, A., Knuuttila, J., Törönen, P., & Castrén, E. (2004). Brain-derived neurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice. The European Journal of Neuroscience, 19, 3245–3254. doi:10.1111/j.0953-816X.2004.03440.x.

    Article  PubMed  Google Scholar 

  • Li, S., Saragovi, H. U., Nedev, H., Zhao, C., Racine, R. J., & Fahnestock, M. (2005). Differential actions of nerve growth factor receptors TrkA and p75NTR in a rat model of epileptogenesis. Molecular and Cellular Neurosciences, 29, 162–172. doi:10.1016/j.mcn.2005.02.007.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, D. H., Thomas, M. J., Smith, D. H., & McIntosh, T. K. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. The Journal of Neuroscience, 12, 4846–4853.

    PubMed  CAS  Google Scholar 

  • Lukasiuk, K., Dabrowski, M., Adach, A., & Pitkänen, A. (2006). Epileptogenesis-related genes revisited. Progress in Brain Research, 158, 223–241. doi:10.1016/S0079-6123(06)58011-2.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J. V. (1981). Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sciences, 29, 2031–2042. doi:10.1016/0024-3205(81)90659-7.

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic, J., & Götz, M. (2007). Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Current Opinion in Neurobiology, 17, 338–344. doi:10.1016/j.conb.2007.04.006.

    Article  PubMed  CAS  Google Scholar 

  • Oliva Jr, A. A., Jiang, M., Lam, T., Smith, K. L., & Swann, J. W. (2000). Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. The Journal of Neuroscience, 20, 3354–3368.

    PubMed  CAS  Google Scholar 

  • Penix, L. P., Davis, W., & Subramaniam, S. (1994). Inhibition of NO synthase increases the severity of kainic acid-induced seizures in rodents. Epilepsy Research, 18, 177–184. doi:10.1016/0920-1211(94)90038-8.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro, P., & Mulle, C. (2006). Kainate receptors. Cell and Tissue Research, 326, 457–482. doi:10.1007/s00441-006-0265-6.

    Article  PubMed  CAS  Google Scholar 

  • Racine, R. J. (1972). Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalography and Clinical Neurophysiology, 32, 281–294. doi:10.1016/0013-4694(72)90177-0.

    Article  PubMed  CAS  Google Scholar 

  • Royes, L. F., Fighera, M. R., Furian, A. F., Oliveira, M. S., Fiorenza, N. G., Petry, J. C., et al. (2007). The role of nitric oxide on the convulsive behavior and oxidative stress induced by methylmalonate: an electroencephalographic and neurochemical study. Epilepsy Research, 73, 228–237. doi:10.1016/j.eplepsyres.2006.10.009.

    Article  PubMed  CAS  Google Scholar 

  • Sardo, P., & Ferraro, G. (2007). Modulatory effects of nitric oxide-active drugs on the anticonvulsant activity of lamotrigine in an experimental model of partial complex epilepsy in the rat. BMC Neuroscience, 8, 47. doi:10.1186/1471-2202-8-47.

    Article  PubMed  Google Scholar 

  • Scantlebury, M. H., Heida, J. G., Hasson, H. J., Velísková, J., Velísek, L., Galanopoulou, A. S., et al. (2007). Age-dependent consequences of status epilepticus: animal models. Epilepsia, 48, 75–82. doi:10.1111/j.1528-1167.2007.01069.x.

    Article  PubMed  Google Scholar 

  • Schinder, A. F., & Poo, M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends in Neurosciences, 23, 639–645. doi:10.1016/S0166-2236(00)01672-6.

    Article  PubMed  CAS  Google Scholar 

  • Simsek-Duran, F., & Lonart, G. (2008). The role of RIM1alpha in BDNF-enhanced glutamate release. Neuropharmacology, 55, 27–34. doi:10.1016/j.neuropharm.2008.04.009.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, R. S. (1987). Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science, 235, 73–76. doi:10.1126/science.2879352.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, R. S., Zappone, C. A., Harvey, B. D., Bumanglag, A. V., Bender, R. A., & Frotscher, M. (2003). “Dormant basket cell” hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. The Journal of Comparative Neurology, 459, 44–76. doi:10.1002/cne.10630.

    Article  PubMed  CAS  Google Scholar 

  • Staley, K. J., & Mody, I. (1992). Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. Journal of Neurophysiology, 68, 197–212.

    PubMed  CAS  Google Scholar 

  • Tandon, P., Yang, Y., Das, K., Holmes, G. L., & Stafstrom, C. E. (1999). Neuroprotective effects of brain-derived neurotrophic factor in seizures during development. Neuroscience, 91, 293–303. doi:10.1016/S0306-4522(98)00609-5.

    Article  PubMed  CAS  Google Scholar 

  • Teunissen, C., Steinbusch, H., Markerink-van Ittersum, M., Koesling, D., & de Vente, J. (2001). Presence of soluble and particulate guanylyl cyclase in the same hippocampal astrocytes. Brain Research, 891, 206–212. doi:10.1016/S0006-8993(00)03213-3.

    Article  PubMed  CAS  Google Scholar 

  • Thippeswamy, T., & Morris, R. (2001). Evidence that nitric oxide-induced synthesis of cGMP occurs in a paracrine but not an autocrine fashion and that the site of its release can be regulated: studies in dorsal root ganglia in vivo and in vitro. Nitric Oxide, 2, 105–115. doi:10.1006/niox.2001.0316.

    Article  Google Scholar 

  • Thippeswamy, T., Haddley, K., Corness, J. D., Howard, M. R., McKay, J. S., Beaucourt, S. M., et al. (2007a). NO-cGMP mediated galanin expression in NGF-deprived or axotomized sensory neurons. Journal of Neurochemistry, 100, 790–801. doi:10.1111/j.1471-4159.2006.04243.x.

    Article  PubMed  CAS  Google Scholar 

  • Thippeswamy, T., Howard, M. R., Cosgrave, A. S., Arora, D. K., McKay, J. S., & Quinn, J. P. (2007b). Nitric oxide-NGF mediated PPTA/SP, ADNP, and VIP expression in the peripheral nervous system. Journal of Molecular Neuroscience, 33, 268–277. doi:10.1007/s12031-007-0066-8.

    Article  PubMed  CAS  Google Scholar 

  • Tutka, P., Klonowski, P., Dzieciuch, J., Kleinrok, Z., & Czuczwar, S. J. (1996). NG-nitro-l-arginine differentially affects glutamate- or kainate-induced seizures. Neuroreport, 7, 1605–1608. doi:10.1097/00001756-199607080-00015.

    Article  PubMed  CAS  Google Scholar 

  • Velísek, L., & Moshé, S. L. (2003). Temporal lobe epileptogenesis and epilepsy in the developing brain: bridging the gap between the laboratory and the clinic. Progression, but in what direction? Epilepsia, 44, 51–59. doi:10.1111/j.0013-9580.2003.12008.x.

    Article  PubMed  Google Scholar 

  • Vulih-Shultzman, I., Pinhasov, A., Mandel, S., Grigoriadis, N., Touloumi, O., Pittel, Z., et al. (2007). Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. The Journal of Pharmacology and Experimental Therapeutics, 323, 438–449. doi:10.1124/jpet.107.129551.

    Article  PubMed  CAS  Google Scholar 

  • Waddell, J., & Shors, T. J. (2008). Neurogenesis, learning and associative strength. The European Journal of Neuroscience, 27, 3020–3028. doi:10.1111/j.1460-9568.2008.06222.x.

    Article  PubMed  Google Scholar 

  • Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H., & Lindholm, D. (1990). Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. The EMBO Journal, 9, 3545–3550.

    PubMed  CAS  Google Scholar 

  • Zaja-Milatovic, S., Gupta, R. C., Aschner, M., Montine, T. J., & Milatovic, D. (2008). Pharmacologic suppression of oxidative damage and dendritic degeneration following kainic acid-induced excitotoxicity in mouse cerebrum. Neurotoxicology, 29, 621–627. doi:10.1016/j.neuro.2008.04.009.

    Article  PubMed  CAS  Google Scholar 

  • Zappone, C. A., & Sloviter, R. S. (2004). Translamellar disinhibition in the rat hippocampal dentate gyrus after seizure-induced degeneration of vulnerable hilar neurons. The Journal of Neuroscience, 24, 853–864. doi:10.1523/JNEUROSCI.1619-03.2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Faculty of Veterinary Science, University of Liverpool and the Department of Pathology, Safety Assessment, AstraZeneca, Macclesfield, UK for their studentship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimmasettappa Thippeswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrave, A.S., McKay, J.S., Morris, R. et al. Nitric Oxide Regulates Activity-Dependent Neuroprotective Protein (ADNP) in the Dentate Gyrus of the Rodent Model of Kainic Acid-Induced Seizure. J Mol Neurosci 39, 9–21 (2009). https://doi.org/10.1007/s12031-008-9169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9169-0

Keywords

Navigation