Skip to main content

Advertisement

Log in

Evidence for Involvement of ERK, PI3K, and RSK in Induction of Bcl-2 by Valproate

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Valproate, an anticonvulsant and mood stabilizer, up-regulates Bcl-2, a neurotrophic/neuroprotective protein. In this study, we investigated the molecular mechanism through which Bcl-2 is up-regulated by valproate using cultured human neuron-like cells. Valproate, within therapeutically relevant ranges, induced time- and concentration-dependent up-regulations of both Bcl-2 messenger RNA and protein implicating an underlying gene transcriptional-mediated mechanism. Bcl-2 up-regulations were associated with ERK1/2 and PI3K pathway activations and elevated levels of activated phospho-RSK and phospho-CREB, convergent targets of the ERK1/2 and PI3K pathways. Valproate increased transcriptional activity of a human bcl-2 promoter–reporter gene construct. This effect was attenuated, but not blocked, by mutation of a CREB DNA binding site, a CRE site in the human bcl-2 promoter sequence. ERK and/or PI3K pathway inhibitors and RSK1 small hairpin RNA knockdown reduced, but did not abolish, baseline and valproate-induced promoter activities and lowered Bcl-2 protein levels. These data collectively suggest that valproate induces Bcl-2 regulation partially through activations of the ERK and PI3K cascades and their convergent kinase, RSK, although other unknown mechanism(s) are likely involved. Given the known roles of Bcl-2 in the central nervous system, the current findings offer a partial yet complex molecular mechanistic explanation for the known neurobiological effects of valproate including neurite growth, neuronal survival, and neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

Bcl-2:

B-cell lymphoma 2

BD:

bipolar (mood) disorder

CRE:

cyclic adenosine monophosphate response element

CREB:

cyclic adenosine monophosphate response element binding protein

ERK:

extracellular signal-regulated kinase

GSK-3:

glycogen synthase kinase-3

HDAC:

histone deacetylase

IMPase:

inositol monophosphatase

PI3K:

phosphatidylinositol 3-kinase

RSK:

p90 ribosomal S6 kinase

VPA:

valproate

References

  • Almeida, R. D., Manadas, B. J., Melo, C. V., Gomes, J. R., Mendes, C. S., Graos, M. M., et al. (2005). Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death and Differentiation, 12, 1329–1343. doi:10.1038/sj.cdd.4401662.

    Article  PubMed  CAS  Google Scholar 

  • Atack, J. R., Prior, A. M., Fletcher, S. R., Quirk, K., McKernan, R., & Ragan, C. I. (1994). Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. The Journal of Pharmacology and Experimental Therapeutics, 270, 70–76.

    PubMed  CAS  Google Scholar 

  • Barnabe-Heider, F., & Miller, F. D. (2003). Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. The Journal of Neuroscience, 23, 5149–5160.

    PubMed  CAS  Google Scholar 

  • Belmaker, R. H. (2004). Bipolar disorder. The New England Journal of Medicine, 351, 476–486. doi:10.1056/NEJMra035354.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P., & Hanley, M. R. (1989). Neural and developmental actions of lithium: A unifying hypothesis. Cell, 59, 411–419. doi:10.1016/0092-8674(89)90026-3.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D. F., Schneider, G. E., Martinou, J. C., & Tonegawa, S. (1997). Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature, 385, 434–439. doi:10.1038/385434a0.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Huang, L. D., Jiang, Y. M., & Manji, H. K. (1999a). The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. Journal of Neurochemistry, 72, 1327–1330. doi:10.1046/j.1471-4159.2000.0721327.x.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Zeng, W. Z., Yuan, P. X., Huang, L. D., Jiang, Y. M., Zhao, Z. H., et al. (1999b). The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. Journal of Neurochemistry, 72, 879–882. doi:10.1046/j.1471-4159.1999.720879.x.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P. S., Peng, G. S., Li, G., et al. (2006). Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Molecular Psychiatry, 11, 1116–1125. doi:10.1038/sj.mp.4001893.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, D. M. (2005). The antiapoptotic actions of mood stabilizers: Molecular mechanisms and therapeutic potentials. Annals of the New York Academy of Sciences, 1053, 195–204. doi:10.1196/annals.1344.018.

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador, F. A., Soliakov, L., & Wonnacott, S. (2002). Nicotine activates the extracellular signal-regulated kinase 1/2 via the alpha7 nicotinic acetylcholine receptor and protein kinase A, in SH-SY5Y cells and hippocampal neurones. Journal of Neurochemistry, 80, 520–530. doi:10.1046/j.0022-3042.2001.00725.x.

    Article  PubMed  CAS  Google Scholar 

  • De Mesquita, D. D., Zhan, Q., Crossley, L., & Badwey, J. A. (2001). p90-RSK and Akt may promote rapid phosphorylation/inactivation of glycogen synthase kinase 3 in chemoattractant-stimulated neutrophils. FEBS Letters, 502, 84–88. doi:10.1016/S0014-5793(01)02669-2.

    Article  PubMed  Google Scholar 

  • De Sarno, P., Li, X., & Jope, R. S. (2002). Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology, 43, 1158–1164. doi:10.1016/S0028-3908(02)00215-0.

    Article  PubMed  Google Scholar 

  • Di Daniel, E., Cheng, L., Maycox, P. R., & Mudge, A. W. (2006). The common inositol-reversible effect of mood stabilizers on neurons does not involve GSK3 inhibition, myo-inositol-1-phosphate synthase or the sodium-dependent myo-inositol transporters. Molecular and Cellular Neuroscience, 32, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biological Psychiatry, 48, 813–829. doi:10.1016/S0006-3223(00)01020-9.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, Y., Rizavi, H. S., Conley, R. R., & Pandey, G. N. (2006). ERK MAP kinase signaling in post-mortem brain of suicide subjects: Differential regulation of upstream Raf kinases Raf-1 and B-Raf. Molecular Psychiatry, 11, 86–98. doi:10.1038/sj.mp.4001744.

    Article  PubMed  CAS  Google Scholar 

  • Einat, H., Yuan, P., Gould, T. D., Li, J., Du, J., Zhang, L., et al. (2003). The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. The Journal of Neuroscience, 23, 7311–7316.

    PubMed  CAS  Google Scholar 

  • Encinas, M., Iglesias, M., Llecha, N., & Comella, J. X. (1999). Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. Journal of Neurochemistry, 73, 1409–1421. doi:10.1046/j.1471-4159.1999.0731409.x.

    Article  PubMed  CAS  Google Scholar 

  • Frodin, M., & Gammeltoft, S. (1999). Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Molecular and Cellular Endocrinology, 151, 65–77. doi:10.1016/S0303-7207(99)00061-1.

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto, T., Morinobu, S., Okamoto, Y., Kagaya, A., & Yamawaki, S. (2001). Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology, 158, 100–106. doi:10.1007/s002130100871.

    Article  PubMed  CAS  Google Scholar 

  • Gobbi, G., & Janiri, L. (2006). Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology, 185, 255–262. doi:10.1007/s00213-006-0317-3.

    Article  PubMed  CAS  Google Scholar 

  • Hao, Y., Creson, T., Zhang, L., Li, P., Du, F., Yuan, P., et al. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. The Journal of Neuroscience, 24, 6590–6599. doi:10.1523/JNEUROSCI.5747-03.2004.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., & Gage, F. H. (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the USA, 101, 16659–16664. doi:10.1073/pnas.0407643101.

    Article  PubMed  CAS  Google Scholar 

  • Keen, J. C., Yan, L., Mack, K. M., Pettit, C., Smith, D., Sharma, D., et al. (2003). A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2¢-deoxycytidine. Breast Cancer Research and Treatment, 81, 177–186. doi:10.1023/A:1026146524737.

    Article  PubMed  CAS  Google Scholar 

  • King, T. D., Gandy, J. C., & Bijur, G. N. (2006). The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels. Experimental Cell Research, 312, 3693–3700. doi:10.1016/j.yexcr.2006.08.010.

    Article  PubMed  CAS  Google Scholar 

  • Kopnisky, K. L., Chalecka-Franaszek, E., Gonzalez-Zulueta, M., & Chuang, D. M. (2003). Chronic lithium treatment antagonizes glutamate-induced decrease of phosphorylated CREB in neurons via reducing protein phosphatase 1 and increasing MEK activities. Neuroscience, 116, 425–435. doi:10.1016/S0306-4522(02)00573-0.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, H. G., Biebl, M., Wilhelm, D., Li, M., Friedlander, R. M., & Winkler, J. (2005). Increased generation of granule cells in adult Bcl-2-overexpressing mice: A role for cell death during continued hippocampal neurogenesis. The European Journal of Neuroscience, 22, 1907–1915. doi:10.1111/j.1460-9568.2005.04377.x.

    Article  PubMed  Google Scholar 

  • Laeng, P., Pitts, R. L., Lemire, A. L., Drabik, C. E., Weiner, A., Tang, H., et al. (2004). The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. Journal of Neurochemistry, 91, 238–251. doi:10.1111/j.1471-4159.2004.02725.x.

    Article  PubMed  CAS  Google Scholar 

  • Lai, J. S., Zhao, C., Warsh, J. J., & Li, P. P. (2006). Cytoprotection by lithium and valproate varies between cell types and cellular stresses. European Journal of Pharmacology, 539, 18–26. doi:10.1016/j.ejphar.2006.03.076.

    Article  PubMed  CAS  Google Scholar 

  • Leinninger, G. M., Backus, C., Uhler, M. D., Lentz, S. I., & Feldman, E. L. (2004). Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. The FASEB Journal, 18, 1544–1546.

    PubMed  CAS  Google Scholar 

  • Liu, Y. Z., Boxer, L. M., & Latchman, D. S. (1999). Activation of the Bcl-2 promoter by nerve growth factor is mediated by the p42/p44 MAPK cascade. Nucleic Acids Research, 27, 2086–2090. doi:10.1093/nar/27.10.2086.

    Article  PubMed  CAS  Google Scholar 

  • Mao, L. M., Tang, Q., & Wang, J. Q. (2007). Protein kinase C-regulated cAMP response element-binding protein phosphorylation in cultured rat striatal neurons. Brain Research Bulletin, 72, 302–308. doi:10.1016/j.brainresbull.2007.01.009.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, B., & Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature reviews, 2, 599–609.

    PubMed  CAS  Google Scholar 

  • Michaelis, M., Suhan, T., Michaelis, U. R., et al. (2006). Valproic acid induces extracellular signal-regulated kinase 1/2 activation and inhibits apoptosis in endothelial cells. Cell Death and Differentiation, 13, 446–453. doi:10.1038/sj.cdd.4401759.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, N., & Chuang, D. M. (1997). Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. Journal of Neurochemistry, 69, 2336–2344.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. Y., Lee, J. Y., Choi, J. Y., Park, M. J., & Kim, D. S. (2006). Nerve growth factor activates brain-derived neurotrophic factor promoter IV via extracellular signal-regulated protein kinase 1/2 in PC12 cells. Molecules and Cells, 21, 237–243.

    PubMed  CAS  Google Scholar 

  • Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., & Klein, P. S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of Biological Chemistry, 276, 36734–36741. doi:10.1074/jbc.M101287200.

    Article  PubMed  CAS  Google Scholar 

  • Phrolov, K., Applebaum, J., Levine, J., Miodovnick, H., & Belmaker, R. H. (2004). Single-dose intravenous valproate in acute mania. The Journal of Clinical Psychiatry, 65, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska, G. (2002). Cell pathology in bipolar disorder. Bipolar Disorders, 4, 105–116. doi:10.1034/j.1399-5618.2002.01149.x.

    Article  PubMed  Google Scholar 

  • Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A., & Ginty, D. D. (1999). Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science, 286, 2358–2361. doi:10.1126/science.286.5448.2358.

    Article  PubMed  CAS  Google Scholar 

  • Richards, S. A., Fu, J., Romanelli, A., Shimamura, A., & Blenis, J. (1999). Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Current Biology, 9, 810–820. doi:10.1016/S0960-9822(99)80364-9.

    Article  PubMed  CAS  Google Scholar 

  • Saini, H. S., Gorse, K. M., Boxer, L. M., & Sato-Bigbee, C. (2004). Neurotrophin-3 and a CREB-mediated signaling pathway regulate Bcl-2 expression in oligodendrocyte progenitor cells. Journal of Neurochemistry, 89, 951–961. doi:10.1111/j.1471-4159.2004.02365.x.

    Article  PubMed  CAS  Google Scholar 

  • Shacka, J. J., & Roth, K. A. (2005). Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: Therapeutic implications. Current Drug Targets. CNS and Neurological Disorders, 4, 25–39. doi:10.2174/1568007053005127.

    Article  PubMed  CAS  Google Scholar 

  • Shaltiel, G., Shamir, A., Shapiro, J., et al. (2004). Valproate decreases inositol biosynthesis. Biological Psychiatry, 56, 868–874. doi:10.1016/j.biopsych.2004.08.027.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Vaden, D. L., Ju, S., Ding, D., Geiger, J. H., & Greenberg, M. L. (2005). Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. The Journal of Biological Chemistry, 280, 41805–41810. doi:10.1074/jbc.M505181200.

    Article  PubMed  CAS  Google Scholar 

  • Sugai, F., Yamamoto, Y., Miyaguchi, K., Zhou, Z., Sumi, H., Hamasaki, T., et al. (2004). Benefit of valproic acid in suppressing disease progression of ALS model mice. The European Journal of Neuroscience, 20, 3179–3183. doi:10.1111/j.1460-9568.2004.03765.x.

    Article  PubMed  Google Scholar 

  • Wilson, B. E., Mochon, E., & Boxer, L. M. (1996). Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Molecular and Cellular Biology, 16, 5546–5556.

    PubMed  CAS  Google Scholar 

  • Xiang, H., Wang, J., & Boxer, L. M. (2006). Role of the cyclic AMP response element in the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and apoptosis in murine B cells. Molecular and Cellular Biology, 26, 8599–8606. doi:10.1128/MCB.01062-06.

    Article  PubMed  CAS  Google Scholar 

  • Xing, J., Kornhauser, J. M., Xia, Z., Thiele, E. A., & Greenberg, M. E. (1998). Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Molecular and Cellular Biology, 18, 1946–1955.

    PubMed  CAS  Google Scholar 

  • York, R. D., Molliver, D. C., Grewal, S. S., Stenberg, P. E., McCleskey, E. W., & Stork, P. J. (2000). Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Molecular and Cellular Biology, 20, 8069–8083. doi:10.1128/MCB.20.21.8069-8083.2000.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, P. X., Huang, L. D., Jiang, Y. M., Gutkind, J. S., Manji, H. K., & Chen, G. (2001). The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. The Journal of Biological Chemistry, 276, 31674–31683. doi:10.1074/jbc.M104309200.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIMH intramural program (Manji and Chen) and a NARSAD research award (Chen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creson, T.K., Yuan, P., Manji, H.K. et al. Evidence for Involvement of ERK, PI3K, and RSK in Induction of Bcl-2 by Valproate. J Mol Neurosci 37, 123–134 (2009). https://doi.org/10.1007/s12031-008-9122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9122-2

Keywords

Navigation