Skip to main content
Log in

Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP)-38 and leukemia inhibitory factor (LIF) were investigated in human neuroblastoma SH-SY5Y cells. Effects on differentiation were assessed through monitoring morphological changes and Western blot analysis of the expression of neuronal marker proteins. In contrast to PACAP-38, which induced a 5.5-fold increase in the number of neurite-bearing cells, LIF had no significant effect on cell morphology compared to control cells over the 4-day time course. Cells co-treated with PACAP-38+LIF showed a similar increase in neurite-bearing cells compared to those treated with PACAP-38 alone. Cell morphology was similar for PACAP-38-treated and PACAP-38+LIF-co-treated cells, with the formation of bipolar neuron-like cells with long thin neurites, topped by growth cone-like structures and varicosities. SH-SY5Y cells express tyrosine hydroxylase (TH) but only low levels of the neuronal marker proteins: Bcl-2, GAP-43 and choline acetyltransferase (ChAT). Treatment of cells with PACAP-38 induced the expression of Bcl-2, GAP-43, and ChAT but did not appear to alter the expression of TH. LIF failed to induce the expression of GAP-43 and had little effect on the expression of TH, but did induce the expression of Bcl-2 and upregulated the expression of ChAT. Co-treatment with LIF had no effect on PACAP-38-induced expression of Bcl-2, GAP-43, and ChAT. Cells differentiated for 4 days with PACAP-38 or treated with LIF also displayed increased resistance to hypoxic conditions and to treatment with H2O2 and TNFα. The increased resistance to hypoxic conditions for PACAP-differentiated cells was blocked by the p38 MAP kinase inhibitor, SB203580, but not by the MEK1 inhibitor, PD98059. Additionally, cell proliferation assays show that LIF, but not PACAP-38, stimulates proliferation of SH-SY5Y cells, and this observed increase by LIF is not attenuated by co-treatment with PACAP. Further investigation of the intracellular signaling pathways mediating the neurotrophic effects of PACAP on SH-SY5Y cells indicate that neither phospholipase C activation nor Ca2+/calmodulin-dependent kinase II (CAMKII) are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

PACAP:

pituitary adenylate cyclase-activating polypeptide

VIP:

vasoactive intestinal peptide

LIF:

leukemia inhibitory factor

PAC1 :

PACAP receptor type I

VPAC1 :

VIP/PACAP receptor type I

VPAC2 :

VIP/PACAP receptor type 2

GPCR:

G protein-coupled receptor

AC:

adenylate cyclase

Epac:

exchange protein directly activated by cAMP

PKA:

cAMP-dependent protein kinase A

ERK:

extracellular signal-regulated kinase

PLC:

phospholipase C

InsP:

inositol phosphates

RA:

retinoic acid

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

GAP-43:

growth-associated protein-43

ChAT:

choline acetyltransferase

TH:

tyrosine hydroxylase

STAT:

signal transducer and activator of transcription

PKB/Akt:

protein kinase B

PI3-K:

phosphatidylinositol-3-kinase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

NGF:

nerve growth factor

BDNF:

brain-derived neurotrophic factor

LPS:

lipopolysaccharide

AIP:

autocamtide-2-related inhibitory peptide

ES:

embryonic stem cell

FBS:

fetal bovine serum

RT-PCR:

reverse transcriptase polymerase chain reaction

References

  • Arimura, A., Somogyvari-Vigh, A., Weill, C., Fiore, R. C., Tatsuno, I., Bay, V., et al. (1994). PACAP functions as a neurotrophic factor. Annals of the New York Academy of Sciences, 739, 228–243.

    Article  PubMed  CAS  Google Scholar 

  • Bamber, B. A., Masters, B. A., Hoyle, G. W., Brinster, R. L., & Palmiter, R. D. (1994). Leukemia inhibitory factor induces neurotransmitter switching in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 91, 7839–7843.

    Article  PubMed  CAS  Google Scholar 

  • Banner, L. R., & Patterson, P. H. (1994). Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proceedings of the National Academy of Sciences of the United States of America, 91, 7109–7113.

    Article  PubMed  CAS  Google Scholar 

  • Bilecki, W., Zapart, G., Ligeza, A., Wawrzczak-Bargiela, A., Urbanski, M. J., & Przewlocki, R. (2005). Regulation of the extracellular signal-regulated kinases following acute and chronic opioid treatment. Cellular and Molecular Life Sciences, 62, 2369–2375.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D. E. (2007). Neuroprotection: A comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Peptides, 28, 1720–1726.

    Article  PubMed  CAS  Google Scholar 

  • Cazillis, M., Gonzalez, B. J., Billardon, C., Lombet, A., Fraichard, A., Samarut, J., et al. (2004). VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. European Journal of Neuroscience, 19, 798–808.

    Article  PubMed  Google Scholar 

  • Chen, Y., Samal, B., Hamelink, C. R., Xiang, C. C., Chen, Y., Chen, M., et al. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regulatory Peptides, 137, 4–19.

    Article  PubMed  CAS  Google Scholar 

  • Dahéron, L., Opitz, S. L., Zaehres, H., Lensch, W. M., Andrews, P. W., Itskovitz-Eldor, J., et al. (2004). LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 22, 770–778.

    Article  PubMed  Google Scholar 

  • Dejda, A., Sokolowska, P., & Nowak, J. Z. (2005). Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacological Reports, 57, 307–320.

    PubMed  CAS  Google Scholar 

  • Delgado, M., Leceta, J., & Ganea, D. (2003). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. Journal of Leukocyte Biology, 73, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, P. J., & Sun, Y. (1992). The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. Journal of Biological Chemistry, 267, 5108–5113.

    PubMed  CAS  Google Scholar 

  • Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., & Brosnan, C. (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia, 7, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Dohi, K., Mizushima, H., Nakajo, S., Ohtaki, H., Matsunaga, S., Aruga, T., et al. (2002). Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regulatory Peptides, 109, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Ceña, V., et al. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. Journal of Neurochemistry, 75, 991–1003.

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel, A., Chafai, M., Vaudry, D., Basille, M., Cazillis, M., Aubert, N., et al. (2007). The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis: Focus on cerebellar granule neurones and embryonic stem cells. Journal of Neuroendocrinology, 19, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Galli, R., Pagano, S. F., Gritti, A., & Vescovi, A. L. (2000). Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Developmental Neuroscience, 22, 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Haas, C. A., Hofmann, H. D., & Kirsch, M. (1999). Expression of CNTF/LIF-receptor components and activation of STAT3 signaling in axotomized facial motoneurons: Evidence for a sequential postlesional function of the cytokines. Journal of Neurobiology, 41, 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Harmar, A. J. (2001). Family-B G-protein-coupled receptorsGenome Biology.2, 3013.3011–3013.3010.

  • Hart, A. M., Wiberg, M., & Terenghi, G. (2003). Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit. British Journal of Plastic Surgery, 56, 444–450.

    Article  Google Scholar 

  • Holtmann, B., Wiese, S., Samsam, M., Grohmann, K., Pennica, D., Martini, R., et al. (2005). Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. Journal of Neuroscience, 25, 1778–1787.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, A., Kameshita, I., Okuno, S., Kitani, T., & Fujisawa, H. (1995). A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochemical and Biophysical Research Communications, 212, 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, N., Wohlhueter, A. L., & Halvorsen, S. W. (2002). Activation and inactivation of signal transducers and activators of transcription by ciliary neurotrophic factor in neuroblastoma cells. Cellular Signalling, 14, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Konat, G. W., Kielian, T., & Marriott, I. (2006). The role of Toll-like receptors in CNS response to microbial challenge. Journal of Neurochemistry, 99, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Langer, I., Perret, J., Verrtongen, P., Waelbroeck, M., & Robberecht, P. (2001). Vasoactive intestinal peptide (VIP) stimulates [Ca2+]i and cyclic AMP in CHO cells expressing Galpha16. Cell Calcium, 30, 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici, P., Jiang, H., & Fink Jr., D. (1998). The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21ras G protein, and pp60c-src cytoplasmic tyrosine kinase. Molecular Pharmacology, 54, 547–558.

    PubMed  CAS  Google Scholar 

  • Li, M., David, C., Kikuta, T., Somogyvari-Vigh, A., & Arimura, A. (2005). Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide-38. Journal of Molecular Neuroscience, 27, 91–105.

    Article  PubMed  Google Scholar 

  • Lutz, E. M., Ronaldson, E., Shaw, P., Johnson, M. S., Holland, P. J., & Mitchell, R. (2006). Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: Consequences for signaling by VIP and PACAP. Molecular and Cellular Neurosciences, 31, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, C. J., Lutz, E. M., Johnson, M. S., Robertson, D. N., Holland, P. J., & Mitchell, R. (2001). Mechanisms of phospholipase C activation by the vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 receptor. Endocrinology, 142, 1209–1217.

    Article  PubMed  CAS  Google Scholar 

  • Martinou, J. C., Martinou, I., & Kato, A. C. (1992). Cholinergic differentiation factor (CDF/LIF) promotes survival of isolated rat embryonic motoneurons in vitro. Neuron, 8, 737–744.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch, D., Lutz, E. M., Johnson, M. S., Robertson, D. N., MacKenzie, C. J., Holland, P. J., et al. (2001). ADP-ribosylation factor-dependent phospholipase D activation by VPAC receptors and a PAC(1) receptor splice variant. Molecular Pharmacology, 59, 1523–1532.

    PubMed  CAS  Google Scholar 

  • McCulloch, D. A., MacKenzie, C. J., Johnson, M. S., Robertson, D. N., Holland, P. J., Ronaldson, E., et al. (2002). Additional signals from VPAC/PAC family receptors. Biochemical Society Transactions, 30, 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Michikawa, M., Kikuchi, S., & Kim, S. U. (1992). Leukemia inhibitory factor (LIF) mediated increase of choline acetyltransferase activity in mouse spinal cord neurons in culture. Neuroscience Letters, 140, 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R., Robertson, D. N., Holland, P. J., Collins, D., Lutz, E. M., & Johnson, M. S. (2003). ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor. Journal of Biological Chemistry, 278, 33818–33830.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, T. K., MacKenzie, C. J., Plevin, R., & Lutz, E. M. (2008). PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. Journal of Neurochemistry, 104, 74–88.

    PubMed  CAS  Google Scholar 

  • Morooka, T., & Nishida, E. (1998). Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. Journal of Biological Chemistry, 273, 24285–24288.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M., Dutton, R., Koblar, S., Cheema, S., & Bartlett, P. (1997). Cytokines which signal through the LIF receptor and their actions in the nervous system. Progress in Neurobiology, 52, 355–378.

    Article  PubMed  CAS  Google Scholar 

  • Ng, Y. P., He, W., & Ip, N. Y. (2003). Leukemia inhibitory factor receptor signaling negatively modulates nerve growth factor-induced neurite outgrowth in PC12 cells and sympathetic neurons. Journal of Biological Chemistry, 278, 38731–38739.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, K. M., Chaverra, M., Hapner, S. J., Nelson, B. R., Todd, V., Zigmond, R. E., et al. (2004). PACAP promotes sensory neuron differentiation: Blockade by neurotrophic factors. Molecular and Cellular Neurosciences, 25, 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki, H., Nakamachi, T., Dohi, K., Aizawa, Y., Takaki, A., Hodoyama, K., et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proceedings of the National Academy of Sciences of the United States of America, 103, 7488–7493.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, S., Kraine, D., Sherman, K., & Lipton, S. A. (2000). Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 97, 7561–7566.

    Article  PubMed  CAS  Google Scholar 

  • Okita, K., & Yamanaka, S. (2006). Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Current Stem Cell Research Therapy, 1, 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Pachernik, J., Bryja, V., Esner, M., Hampl, A., & Dvorak, P. (2005). Retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells is potentiated by leukemia inhibitory factor. Physiological Reviews, 54, 257–262.

    CAS  Google Scholar 

  • Pisegna, J. R., & Wank, S. A. (1996). Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Journal of Biological Chemistry, 271, 17267–17274.

    Article  PubMed  CAS  Google Scholar 

  • Påhlman, S., Hoehner, J. C., Nanberg, E., Hedborg, F., Fagerstrom, S., Gestblom, C., et al. (1995). Differentiation and survival influences of growth factors in human neuroblastoma. European Journal of Cancer, 31A, 453–458.

    Article  PubMed  Google Scholar 

  • Påhlman, S., Ruusala, A.-I., Abrahamsson, L., Mattsson, M. E. K., & Esscher, T. (1984). Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation. Cell Differentiation, 14, 135–144.

    Article  PubMed  Google Scholar 

  • Qiu, L., Bernd, P., & Fukada, K. (1994). Cholinergic neuronal differentiation factor (CDF)/leukemia inhibitory factor (LIF) binds to specific regions of the developing nervous system in vivo. Developments in Biologicals, 163, 516–520.

    Article  CAS  Google Scholar 

  • Russo, V. C., Metaxas, S., Kobayashi, K., Harris, M., & Werther, G. A. (2004). Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology, 145, 4103–4112.

    Article  PubMed  CAS  Google Scholar 

  • Sheward, W. J., Lutz, E. M., Copp, A. J., & Harmar, A. J. (1998). Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Developmental Brain Research, 109, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336, 688–690.

    Article  PubMed  CAS  Google Scholar 

  • Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H., et al. (1993). Differential signal transduction by 5 splice variants of the PACAP receptor. Nature, 365, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Stumm, R., Kolodziej, A., Prinz, V., Endres, M., Wu, D.-F., & Höllt, V. (2007). Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage. Journal of Neurochemistry, 103, 1666–1681.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Yamashita, T., Tanaka, K., Hattori, H., Sawamoto, K., Okano, H., et al. (2005). Activation of cytokine signaling through leukemia inhibitory factor receptor (LIFR)/gp130 attenuates ischemic brain injury in rats. Journal of Cerebral Blood Flow and Metabolism, 25, 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., & Ichijo, H. (2002). Neuronal p38 MAPK signalling: An emerging regulator of cell fate and function in the nervous system. Genes Cells, 7, 1099–1111.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Matsuzawa, A., Nishitoh, H., Tobiume, K., Kishida, S., Ninomiya-Tsuji, J., et al. (2004). Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation. EMBO Reports, 5, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Takei, N., Torres, E., Yuhara, A., Jongsma, H., Otto, C., Korhonen, L., et al. (2000). Pituitary adenylate cyclase-activating polypeptide promotes the survival of basal forebrain cholinergic neurons in vitro and in vivo: Comparison with effects of nerve growth factor. European Journal of Neuroscience, 12, 2273–2280.

    Article  PubMed  CAS  Google Scholar 

  • Tamas, A., Reglodi, D., Szanto, Z., Borsiczky, B., Nemeth, J., & Lengvari, I. (2002). Comparative neuroprotective effects of preischemic PACAP and VIP administration in permanent occlusion of the middle cerebral artery in rats. Neuro Endocrinology Letters, 23, 249–254.

    PubMed  CAS  Google Scholar 

  • Terenghi, G. (1999). Peripheral nerve regeneration and neurotrophic factors. Journal of Anatomy, 194, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Turnley, A. M., & Bartlett, P. F. (2000). Cytokines that signal through the leukemia inhibitory factor receptor-b complex in the nervous system. Journal of Neurochemistry, 74, 889–899.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Pamantung, T. F., Basille, M., Rouselle, C., Fournier, A., Vaudry, H., et al. (2002). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. European Journal of Neuroscience, 15, 1451–1460.

    Article  PubMed  CAS  Google Scholar 

  • Vitalis, E. A., Costantin, J. L., Tsai, P. S., Sakakibara, H., Paruthiyil, S., Iiri, T., et al. (2000). Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 1861–1866.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Qi, C., Fan, G. H., Zhou, H. Y., & Chen, S. D. (2005). PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Letters, 579, 4005–4011.

    Article  PubMed  CAS  Google Scholar 

  • Waschek, J. A. (2002). Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Developmental Neuroscience, 24, 14–23.

    Article  PubMed  CAS  Google Scholar 

  • Waschek, J. A., Casillas, R. A., Nguyen, T. B., DiCicco-Bloom, E. M., Carpenter, E. M., & Rodriguez, W. I. (1998). Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: Potential role in patterning and neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 95, 9602–9607.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., et al. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336, 684–687.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, N., & Krieglstein, K. (1995). Phenotypic development of neonatal rat chromaffin cells in response to adrenal growth factors and glucocorticoids: Focus on pituitary adenylate cyclase activating polypeptide. Neuroscience Letters, 200, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Yuhara, A., Ishii, K., Nishio, C., Abiru, Y., Yamada, M., Nawa, H., et al. (2003). PACAP and NGF cooperatively enhance choline acetyltransferase activity in postnatal basal forebrain neurons by complementary induction of its different mRNA species. Biochemical and Biophysical Research Communications, 301, 344–349.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y.-Z., Hannibal, J., Zhao, Q., Moller, K., Danielsen, N., Fahrenkrug, J., et al. (1996). Pituitary adenylate cyclase activating peptide expression in the rat dorsal root ganglia: Up-regulation after peripheral nerve injury. Neuroscience, 74, 1099–1110.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Shi, T.-J., Ji, R.-R., Zhang, Y.-T., Sundler, F., Hannibal, J., et al. (1995). Expression of pituitary adenylate cyclase-activating polypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Research, 705, 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, C. J., Shioda, S., Shibanuma, M., Nakajo, S., Funahashi, H., Nakai, Y., et al. (1999). Pituitary adenylate cyclase-activating polypeptide receptors during development: Expression in the rat embryo at primitive streak stage. Neuroscience, 93, 375–391.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr Clett Erridge for the gifts of TNFα and LPS and Mr. Alex McDowall for the use of his anaerobic chamber. We also would like to acknowledge the influential work of Professor Akira Arimura on this research, particularly his discovery and characterization of PACAP as well as his inspiration, encouragement, and generosity to others that have led towards a much greater understanding of its biological functions. This research was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaghan, T.K., Pou, C., MacKenzie, C.J. et al. Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells. J Mol Neurosci 36, 45–56 (2008). https://doi.org/10.1007/s12031-008-9082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9082-6

Keywords

Navigation