Skip to main content
Log in

Biological and Structural Analysis of Truncated Analogs of PACAP27

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The affinity toward the PAC1 receptor, the biological activity, and the α-helical content of several truncated PACAP27 analogs were measured. We first evaluated the pharmacological and structural parameters of C-terminal shortened PACAP fragments, from PACAP(1–23) to PACAP(1–19). All carboxy-truncated derivatives demonstrated circular dichroism spectra typical of a helical conformation. On the other hand, progressive shortening of the C-terminal domain gradually decreases the potency of PACAP to bind and to activate the PAC1 receptor. This decrease in biological activity was mainly attributed to the removal of residues that seem to interact directly with the receptor rather than to a destabilization of the C-terminal helical conformation. We also investigated the pharmacological and conformational characteristics of several hybrid PACAP27 derivatives containing an aliphatic molecular spacer connecting the N-terminal domain to the C-terminal region. However, this strategy revealed that none of these discontinuous analogs showed any significant affinity toward the PAC1 receptor, even if some of them exhibited circular dichroism spectra corresponding to an α-helical structure. This study suggests that several domains of PACAP27 are involved in the interaction with the PAC1 receptor and that the presence of the helical conformation is not a sufficient feature for receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andrade, M. A., Chacón, P., Merelo, J. J., & Morán, F. (1993). Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Protein Engineering, 6, 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., Li, M., & Batuman, V. (2006). Treatment of renal failure associated with multiple myeloma and other diseases by PACAP-38. Annals of the New York Academy of Sciences, 1070, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Bourgault, S., Vaudry, D., Botia, B., et al. (2008). Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides, DOI 10.1016/j.peptides.2008.01.022.

  • Chen, W. H., & Tzeng, S. F. (2005). Pituitary adenylate cyclase-activating polypeptide prevents cell death in the spinal cord with traumatic injury. Neuroscience Letters, 384, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Samal, B., Hamelink, C. R., et al. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regulatory Peptides, 137, 4–19.

    Article  PubMed  CAS  Google Scholar 

  • Dejda, A., Sokolowska, P., & Nowak, J. Z. (2005). Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacological Reports, 57, 307–320.

    PubMed  CAS  Google Scholar 

  • Forget, M. A., Lebel, N., Sirois, P., Boulanger, Y., & Fournier, A. (1996). Biological and molecular analyses of structurally reduced analogues of endothelin-1. Molecular Pharmacology, 49, 1071–1079.

    PubMed  CAS  Google Scholar 

  • Fournier, A., Gagnon, D., Quirion, R., et al. (1994). Conformational and biological studies of neuropeptide Y analogs containing structural alterations. Molecular Pharmacology, 45, 93–101.

    PubMed  CAS  Google Scholar 

  • González-Muñiz, R., Martín-Martínez, M., Granata, C., et al. (2001). Conformationally restricted PACAP27 analogues incorporating type II/II′ IBTM beta-turn mimetics. Synthesis, NMR structure determination, and binding affinity. Bioorganic & Medicinal Chemistry, 9, 3173–3183.

    Article  Google Scholar 

  • Gourlet, P., Vandermeers, A., Vandermeers-Piret, M. C., Rathe, J., De Neef, P., & Robberecht, P. (1996). C-terminally shortened pituitary adenylate cyclase-activating peptides (PACAP) discriminate PACAP I, PACAP II-VIP1 and PACAP II-VIP2 recombinant receptors. Regulatory Peptides, 62, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Inooka, H., Endo, S., Kitada, C., Mizuta, E., & Fujino, M. (1992). Pituitary adenylate cyclase activating polypeptide (PACAP) with 27 residues. Conformation determined by 1H NMR and CD spectroscopies and distance geometry in 25% methanol solution. International Journal of Peptide & Protein Research, 40, 456–464.

    CAS  Google Scholar 

  • Inooka, H., Ohtaki, T., Kitahara, O., et al. (2001). Conformation of a peptide ligand bound to its G-protein coupled receptor. Nature Structural Biology, 8, 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Kong, L. Y., Maderdrut, J. L., Jeohn, G. H., & Hong, J. S. (1999). Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience, 91, 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, C., Abad, C., Delgado, M., et al. (2002). Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 99, 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  • Nicole, P., Lins, L., Rouyer-Fessard, C., et al. (2000). Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. Journal of Biological Chemistry, 275, 24003–24012.

    Article  PubMed  CAS  Google Scholar 

  • Olson, G. L., Bolin, D. R., Bonner, M. P., et al. (1993). Concepts and progress in the development of peptide mimetics. Journal of Medicinal Chemistry, 36, 3039–3049.

    Article  PubMed  CAS  Google Scholar 

  • Onoue, S., Endo, K., Ohshima, K., Yajima, T., & Kashimoto, K. (2002). The neuropeptide PACAP attenuates beta-amyloid (1–42)-induced toxicity in PC12 cells. Peptides, 23, 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  • Reglodi, D., Lubics, A., Kiss, P., et al. (2006). Effect of PACAP in 6-OHDA-induced injury of the substantia nigra in intact young and ovariectomized female rats. Neuropeptides, 40, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht, P., Gourlet, P., De Neef, P., et al. (1992). Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6–38) as a potent antagonist. European Journal of Biochemistry, 207, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, J. M., Qian, H., York, E. J., Stewart, J. M., & Baldwin, R. L. (1991). Parameters of helix–coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers, 31, 1463–1470.

    Article  PubMed  CAS  Google Scholar 

  • Shintani, N., Suetake, S., Hashimoto, H., et al. (2005). Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regulatory Peptides, 126, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Sreerema, N., Venyaminov, S. Y., & Woody, R. W. (1999). Estimation of the number of helical and strand segments in proteins using CD spectroscopy. Protein Science, 8, 370–380.

    Google Scholar 

  • Sun, C., Song, D., Davis-Taber, R. A., et al. (2007). Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proceedings of the National Academy of Sciences of the United States of America, 104, 7875–7880.

    Article  PubMed  CAS  Google Scholar 

  • Van Stokkum, I. H. M., Spoelder, H. J. W., Bloemendal, M., Van Grondelle, R., & Groen, F. C. A. (1990). Estimation of protein secondary structure and error analysis from CD spectra. Analytical Biochemistry, 191, 110–118.

    Article  PubMed  Google Scholar 

  • Vandermeers, A., Vandenborre, S., Hou, X., et al. (1992). Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes. European Journal of Biochemistry, 208, 815–819.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Hamelink, C., Damadzic, R., Eskay, R. L., Gonzalez, B., & Eiden, L. E. (2005). Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides, 26, 2518–2524.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Pamantung, T. F., Basille, M., et al. (2002a). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. European Journal of Neuroscience, 15, 1451–1460.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Rousselle, C., Basille, M., et al. (2002b). Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 99, 6398–6403.

    Article  PubMed  CAS  Google Scholar 

  • Whitmore, L., & Wallace, B. A. (2004). DICHROWEB: An online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32, 668–673.

    Article  Google Scholar 

  • Wray, V., Kakoschke, C., Nokihara, K., & Naruse, S. (1993). Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry, 32, 5832–5841.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., Hashimoto, H., Tomimoto, S., et al. (2003). Overexpression of PACAP in transgenic mouse pancreatic beta-cells enhances insulin secretion and ameliorates streptozotocin-induced diabetes. Diabetes, 52, 1155–1162.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR), the Institut National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale (INSERM U413), the Conseil Régional de Haute-Normandie, and a scientific exchange program from INSERM and the Fonds de la Recherche en Santé du Québec. Parts of these studies were performed with the support of the Platform for Cell Imaging of Haute-Normandie. H.V. is an Affiliated Professor at the Institut National de la Recherche Scientifique—Institut Armand-Frappier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Fournier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgault, S., Vaudry, D., Guilhaudis, L. et al. Biological and Structural Analysis of Truncated Analogs of PACAP27. J Mol Neurosci 36, 260–269 (2008). https://doi.org/10.1007/s12031-008-9081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9081-7

Keywords

Navigation