Skip to main content
Log in

Presynaptic Ryanodine Receptor–CamKII Signaling is Required for Activity-dependent Capture of Transiting Vesicles

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Activity elicits capture of dense-core vesicles (DCVs) that transit through resting Drosophila synaptic boutons to produce a rebound in presynaptic neuropeptide content following release. The onset of capture overlaps with an increase in the mobility of DCVs already present in synaptic boutons. Vesicle mobilization requires Ca2+-induced Ca2+ release by presynaptic endoplasmic reticulum (ER) ryanodine receptors (RyRs) that in turn stimulates Ca2+/calmodulin-dependent kinase II (CamKII). Here we show that the same signaling is required for activity-dependent capture of transiting DCVs. Specifically, the CamKII inhibitor KN-93, but not its inactive analog KN-92, eliminated the rebound replacement of neuropeptidergic DCVs in synaptic boutons. Furthermore, pharmacologically or genetically inhibiting neuronal sarco-endoplasmic reticulum calcium ATPase to deplete presynaptic ER Ca2+ stores or directly inhibiting RyRs prevented the capture response. These results show that the presynaptic RyR–CamKII pathway, which triggers mobilization of resident synaptic DCVs to facilitate exocytosis, also mediates activity-dependent capture of transiting DCVs to replenish neuropeptide stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ataman, B., Ashley, J., Gorczyca, M., Ramachandran, P., Fouquet, W., Sigrist, S. J., et al. (2008). Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron, 57, 705–718.

    Article  PubMed  CAS  Google Scholar 

  • Barkus, R. V., Klyachko, O., Horiuchi, D., Dickson, B. J., & Saxton, W. M. (2008). Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Molecular Biology of the Cell, 19, 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Frischknecht, R., Fejtova, A., Viesti, M., Stephan, A., & Sonderegger, P. (2008). Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin. Journal of Neuroscience, 28, 1568–1579.

    Article  PubMed  CAS  Google Scholar 

  • Guillaud, L., Wong, R., & Hirokawa, N. (2008). Disruption of KIF17–Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biology, 10, 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Levitan, E. S., Lanni, F., & Shakiryanova, D. (2007). In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction. Nature Protocols, 2, 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  • Pack-Chung, E., Kurshan, P. T., Dickman, D. K., & Schwarz, T. L. (2007). A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nature Neuroscience, 10, 980–989.

    Article  PubMed  CAS  Google Scholar 

  • Rao, S., Lang, C., Levitan, E. S., & Deitcher, D. L. (2001). Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. Journal of Neurobiology, 49, 159–172.

    Article  PubMed  CAS  Google Scholar 

  • Sanyal, S., Consoulas, C., Kuromi, H., Basole, A., Mukai, L., Kidokoro, Y., et al. (2005). Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics, 169, 737–750.

    Article  PubMed  CAS  Google Scholar 

  • Shakiryanova, D., Tully, A., Hewes, R. S., Deitcher, D. L., & Levitan, E. S. (2005). Activity-dependent liberation of synaptic neuropeptide vesicles. Nature Neuroscience, 8, 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Shakiryanova, D., Tully, A., & Levitan, E. S. (2006). Activity-dependent synaptic capture of transiting peptidergic vesicles. Nature Neuroscience, 9, 896–900.

    Article  PubMed  CAS  Google Scholar 

  • Shakiryanova, D., Klose, M. K., Zhou, Y., Gu, T., Deitcher, D. L., Atwood, H. L., et al. (2007). Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. Journal of Neuroscience, 27, 7799–7806.

    Article  PubMed  CAS  Google Scholar 

  • Ziv, N. E., & Garner, C. C. (2004). Cellular and molecular mechanisms of presynaptic assembly. Nature Reviews, 5, 385–399.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, G. K. (1996). Peptidergic transmission: from morphological correlates to functional implications. Micron, 27, 35–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grant NS32385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. Levitan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.Y., Shakiryanova, D. & Levitan, E.S. Presynaptic Ryanodine Receptor–CamKII Signaling is Required for Activity-dependent Capture of Transiting Vesicles. J Mol Neurosci 37, 146–150 (2009). https://doi.org/10.1007/s12031-008-9080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9080-8

Keywords

Navigation