Skip to main content
Log in

Stage-specific Modulation of Neprilysin and Aminopeptidase N in the Limbic System During Kindling Progression

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Aminopeptidase N (APN) and neprilysin (NEP) inactivate neuropeptides released into the brain extracellular fluid. We previously showed that the expression of pyroglutamyl peptidase II (PPII), the TRH degrading ecto-enzyme, is regulated in rat brain by amygdaline kindling, a paradigm that activates neuronal pathways in the limbic system increasing the expression of several neuropeptides including TRH and opioids. To understand the specificity of this phenomenon, we studied APN and NEP expression in brains of partially or fully kindled rats (stage II and V), sacrificed 6 h after last stimulus, compared with sham-operated animals. In situ hybridization analysis of NEP mRNA levels showed decreased expression at stage II in CA1, CA2, olfactory tubercle and medial mammillary nucleus, and increased at stage V in CA1 and CA2 cells. These changes were specific for the ipsilateral side. APN mRNA levels, semi-quantified by RT-PCR, were decreased at stage II and increased at stage V, in frontal cortex-olfactory tubercle, and hippocampus. NEP and APN enzymatic activities, determined by fluorometric assays, followed similar variations to their respective mRNA levels. The coordinated changes (in some regions) of NEP and APN expression were opposite to those previously observed for PPII mRNA and activity levels in limbic regions. These results demonstrate that expression of ectopeptidases can be regulated when peptide neurons are activated and, that regulation is enzyme-, region-, and stage-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antczak, C., De Meester, I., & Bauvois, B. (2001). Ectopeptidases in pathophysiology. BioEssays, 23, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Balog, T., Marotti, T., Abramic, M., Beusan-Svoboda, I., Sobocanec, S., & Hrsak, I. (2001). Neutrophil neutral endopeptidase variation and its regulation by opioid peptides. International Immunopharmacology, 1, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, K., Doherty, A., & Turner, A. J. (1995). Endopeptidase 24.11 is the integral membrane peptidase initiating degradation of somatostatin in the hippocampus. Journal of Neurochemistry, 64, 1826–1832.

    Article  PubMed  CAS  Google Scholar 

  • Bregola, G., Zucchini, S., Rodi, D., Binaschi, A., D’Addario, C., Landuzzi, D., et al. (2002). Involvement of the neuropeptide Nociceptin/Orphanin FQ in kainate seizures. Journal of Neuroscience, 22, 10030–10038.

    PubMed  CAS  Google Scholar 

  • Burazin, T. C. D., & Gundlach, A. L. (1996). Rapid and transient increases in cellular immediate early gene and neuropeptide mRNAs in cortical and limbic areas after amygdaloid kindling seizures in the rat. Epilepsy Research, 26, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Charli, J. L., Méndez, M., Cisneros, M., Vargas, M. A., Assai, M., Joseph-Bravo, P., et al. (1989). Inhibition of pyroglutamate aminopeptidase II specifically increases recovery of TRH released from brain slices. Neuropeptides, 14, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Charli, J. L., Pascual, I., Cruz, R., & Vargas, M. A. (2006). Post-secretory inactivation of peptides in the hypothalamic-adenohypophyseal axis: Focus on pyroglutamyl peptidase II, the thyrotropin releasing hormone inactivating ectoenzyme. In P. Joseph-Bravo (Ed.), Molecular endocrinology (pp. 39–64). Kerala: Research Signpost, Transworld Research Network.

    Google Scholar 

  • Charli, J. L., Vargas, M. A., Cisneros, M., de Gortari, P., Baeza, M. A., Jasso P., et al. (1998). TRH inactivation in the extracellular compartment: Role of pyroglutamyl peptidase II. Neurobiology, 6, 45–57.

    PubMed  CAS  Google Scholar 

  • Csuhai, E., Little, S. S., & Hersh, L. B. (1995). Inactivation of neuropeptides. Progress in Brain Research, 104, 131–142.

    PubMed  CAS  Google Scholar 

  • Dauch, P., Masuo, Y., Vincent, J.-P., & Checler, F. (1993). A survey of the cerebral regionalization and ontogeny of eight exo- and endopeptidases in murines. Peptides, 14, 593–599.

    Article  PubMed  CAS  Google Scholar 

  • de Gortari, P., Cisneros, M., & Joseph-Bravo, P. (2005b). Chronic ethanol or glucose consumption alter TRH content and PPII activity in rat limbic regions. Regulatory Peptides, 127, 141–150.

    Article  CAS  Google Scholar 

  • de Gortari, P., Fernández-Guardiola, A., Martínez, A., Cisneros, M., & Joseph-Bravo, P. (1995). Changes in TRH and its degrading enzyme pyroglutamyl peptidase II, during the development of amygdaloid kindling. Brain Research, 679, 144–150.

    Article  PubMed  Google Scholar 

  • de Gortari, P., Joseph-Bravo, P., Monroy-Ruiz, J., Martínez, A., Cisneros, M., & Fernández-Guardiola, A. (1998). Brain thyrotropin-releasing hormone content varies through amygdaloid kindling development according to afterdischarge frequency and propagation. Epilepsia, 38, 897–903.

    Article  Google Scholar 

  • de Gortari, P., Romero, F., Cisneros, M., & Joseph-Bravo, P. (2005a). Acute administration of alcohol modulates pyroglutamyl peptidase II activity and mRNA levels in rat limbic regions. Neurochemistry International, 46, 347–356.

    Article  CAS  Google Scholar 

  • de Gortari, P., Uribe, R. M., García-Vázquez, I., Martínez, A., Aguilar-Valles, A., Charli, J. L., et al. (2006). Amygdala kindling differential regulates the expression of the elements involved in TRH transmission. Neurochemistry International, 38, 41–42.

    Google Scholar 

  • Dyer, S. H., Slaughter, C. A., Orth, K., Moomaw, C. R., & Hersh, L. B. (1990). Comparison of the soluble and membrane-bound forms of the puromycin-sensitive enkephalin-degrading aminopeptidases from rat. Journal of Neurochemistry, 54, 547–554.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, E. A., & Eckman, C. B. (2005). Aβ-degrading enzymes: Modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions, 33, 1101–1105.

    Article  PubMed  CAS  Google Scholar 

  • Erakovic, V., Zupan, G., Vartjen, J., Laginja, V., & Simonic, A. (2001). Altered activities of rat brain metabolic enzymes caused by pentylenetetrazol kindling and pentylenetetrazol-induced seizures. Epilepsy Research, 43, 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Erdos, E. G., Wagner, B., Harbury, C. B., Painter, R. G., Skidgel, R. A., & Fa, X. G. (1989). Down regulation and inactivation of neutral endopeptidase 24.11 (enkephalinase) in human neutrophils. Journal of Biological Chemistry, 264, 14519–14523.

    PubMed  CAS  Google Scholar 

  • Facchinetti, P., Rose, C., Schwartz, J. C., & Ouimet, T. (2003). Ontogeny, regional and cellular distribution of the novel metalloprotease neprilysin 2 in the rat: A comparison with neprilysin and endothelin-converting enzyme-1. Neuroscience, 118, 627–639.

    Article  PubMed  CAS  Google Scholar 

  • Foster, J. A., Puchowicz, M. J., McIntyre, D. C., & Herkenham, M. (2004). Activin mRNA induced during amygdala kindling shows a spatiotemporal progression that tracks the spread of seizures. Journal of Comparative Neurology, 476, 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Fulcher, I. S., & Kenny, J. (1983). Proteins of the kidney microvillar membrane. Biochemical Journal, 211, 743–753.

    PubMed  CAS  Google Scholar 

  • Gaudoux, F., Boileau, G., & Crine, P. (1993). Localization of neprilysin (EC 3.4.24.11) mRNA in rat brain by in situ hybridization. Journal of Neuroscience Research, 34, 426–433.

    Article  PubMed  CAS  Google Scholar 

  • Goddard, G. V., McIntyre, D. C., & Leech, C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Experimental Neurology, 25, 295–330.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, L. J. (1962). Fluorometric measurement of alkaline phosphatase and aminopeptidase activities in the order of 10(−14) mole. Biochemical and Biophysical Research Communications, 9, 430–435.

    Article  PubMed  CAS  Google Scholar 

  • Gros, C., Giros, B., & Schwartz, J. C. (1985). Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes. Biochemistry, 24, 2179–2185.

    Article  PubMed  CAS  Google Scholar 

  • Heuer, H., Schäfer, K. H., O’Donnel, D., Walker, P., & Bauer, K. (2000). Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. Journal of Comparative Neurology, 428, 319–336.

    Article  PubMed  CAS  Google Scholar 

  • Ishikura, N., Tsunashima, K., Watanabe, K. I., Nishimura, T., Shirayama, Y., & Kato, N. (2001). Temporal change of hippocampal enkephalin and dynorphin mRNA following trimethyltin intoxication in rats: Effect of anticonvulsant. Neuroscience Letters, 306, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Joseph-Bravo, P., Fresán, M. E., Cisneros, M., Vargas, M. A., & Charli, J. L. (1994). Pyroglutamyl peptidase II activity is not in the processes of bulbospinal TRHergic neurons. Neuroscience Letters, 178, 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Knoblach, S. M., & Kubek, M. J. (1997a). Increases in thyrotropin-releasing hormone messenger RNA expression induced by a model of human temporal lobe epilepsy: Effect of partial and complete kindling. Neuroscience, 76, 85–95.

    Article  CAS  Google Scholar 

  • Knoblach, S. M., & Kubek, M. J. (1997b). Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: Effect of partial and complete kindling. Neuroscience, 76, 97–104.

    Article  CAS  Google Scholar 

  • Konkoy, C. S., & Davis, T. P. (1996). Ectoenzymes as sites of peptide regulation. Trends in Pharmacological Sciences, 17, 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Malfroy, B., Kado-Fong, H., Gros, C., Giros, B., Schwartz, J. C., & Hellmiss, R. (1989). Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: A member of a super family of zinc-metallohydrolases. Biochemical and Biophysical Research Communications, 161, 236–241.

    Article  PubMed  CAS  Google Scholar 

  • Marti, M., Bregola, G., Morari, M., Gemignani, A., & Simonato, M. (2000). Somatostatin release in the hippocampus in the kindling model of epilepsy: A microdialysis study. Journal of Neurochemistry, 74, 2497–2503.

    Article  PubMed  CAS  Google Scholar 

  • Mirski, M. A., & Ferrendelli, J. A. (1987). Interruption of the connections of the mammillary bodies protects against generalized pentylenetetrazol seizures in guinea pigs. Journal of Neuroscience, 7, 6662–6670.

    Google Scholar 

  • Morimoto, K., Fahnestock, M., Racine, R.-J. (2004). Kindling and status epilepticus models of epilepsy: Rewiring the brain. Progress in Neurobiology, 73, 1–60.

    Article  PubMed  CAS  Google Scholar 

  • Noble, F., Banisadr, G., Jardinaud, G., Popovici, T., Lai-Kuen, R., Chan, H., et al. (2001). First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience, 105, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, B., & O’Cuinn, G. (1984). Localization of a narrow-specificity thyroliberin hydrolyzing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain. European Journal of Biochemistry, 144, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • O’Cuinn, G., O’Connor, B., Gilmartin, L., & Smyth, M. (1995). Neuropeptide inactivation by peptidases. In G. O’Cuinn (Ed.), Metabolism of brain peptides (pp. 99–157). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ouimet, T., Facchinetti, P., Rose, C., Bonhomme, M. C., Gros, C., & Schwartz, J. C. (2000). Neprilysin II: A putative novel metalloprotease and its isoforms in CNS and testis. Biochemical and Biophysical Research Communications, 271, 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates (5th edn.). San Diego, CA: Elsevier.

    Google Scholar 

  • Racine, R. J. (1972). Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology, 32, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, L., Evans, C. J., & Maidment, N. T. (1997). Amygdala kindling modifies extracellular opioid peptide content in rat hippocampus measured by microdialysis. Journal of Neurochemistry, 68, 616–624.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, L., Maidment, N. T., Evans, C. J., Ackermann, R. F., & Engel Jr, J. (1996). Opioid peptide release and mu-receptor binding during amygdala kindling in rats: Regional discordances. Epilepsy Research Supplement, 12, 215–228.

    PubMed  CAS  Google Scholar 

  • Romualdi, P., Bregola, G., Donatini, A., Capobianco, A., & Simonato, M. (1999). Region-specific changes in prodynorphin mRNA and ir-Dynorphin A levels after kindled seizures. Journal of Molecular Neuroscience, 13, 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Roques, B. P. (2000). Novel approaches to targeting neuropeptide systems. Trends in Pharmacological Sciences, 21, 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Rose, C., Voisin, S., Gros, C., Schwartz, J. C., & Ouimet, T. (2002). Cell-specific activity of neprilysin 2 isoforms and enzymic specificity compared with neprilysin. Biochemical Journal, 363, 697–705.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, J. B., Cain, C. J., Weiss, S. R., & Post, R. M. (1992). Alterations in mRNA of enkephalin, dynorphin, and thyrotropin-releasing hormone during amygdala kindling: An in situ hybridization study. Molecular Brain Research, 15, 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Sagratella, S. (1994). Enkephalinase inhibition and hippocampal excitatory effects of exogeneous and endogeneous opioids. Progress in Neuro-psychopharmacology and Biological Psychiatry, 18, 965–978.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., et al. (2005). Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nature Medicines, 11, 434–439.

    Article  CAS  Google Scholar 

  • Sánchez, E., Charli, J. L., Morales, C., Corkidi, G., Seidah, N., Joseph-Bravo, P., et al. (1997). Expression of the proprotein convertases PC1 and PC2 mRNAs in thyrotropin-releasing hormone neurons of the rat paraventricular nucleus of the hypothalamus. Brain Research, 761, 77–86.

    Article  PubMed  Google Scholar 

  • Schwartz, J. C., Malfroy, B., & De La Baume, S. (1981). Biolological inactivation of enkephalins and the role of enkephalin-dipeptidyl-carboxypeptidase (“enkephalinase”) as neuropeptidase. Life Sciences, 29, 1715–1740.

    Article  PubMed  CAS  Google Scholar 

  • Sharif, N. A., Towle, A. C., Burt, D. R., Mueller, R. A., & Breese, G. R. (1989). Cotransmitters: Differential effects of serotonin (5-HT)-depleting drugs on levels of 5-HT and TRH and their receptors in rat brain and spinal cord. Brain Research, 480, 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Shinoda, H., Nadi, N., & Schwartz, J. P. (1991). Alterations in somatostatin and proenkephalin mRNA in response to a single amygdaloid stimulation versus kindling. Molecular Brain Research, 11, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Siems, W., Maul, B., Krause, W., Gerard, C., Hauser, K. F., Hersh, L. B., et al. (2000). Neutral endopeptidase and alcohol consumption, experiments in neutral endopeptidase-deficient mice. European Journal of Pharmacology, 397, 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Sumitomo, M., Shen, R., Walburg, M., Dai, J., Geng, Y., Navarro, D., et al. (2000). Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. Journal of Clinical Investigation, 106, 1399–1407.

    Article  PubMed  CAS  Google Scholar 

  • Tieku, S., & Hooper, N. M. (1992). Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochemical Pharmacology, 44, 1725–1730.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A. J. (1998). Membrane alanyl aminopeptidase. In A. J. Barrett, N. D. Rawlings, J. F. Woessner (Eds.), Handbook of proteolytic enzymes (pp. 996–1000). San Diego, CA: Academic.

    Google Scholar 

  • Turner, A. J., Isaac, R. E., & Coates, D. (2001). The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays, 23, 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Tuunanen, J., & Pitkänen, A. (2000). Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Research, 39, 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Vargas, M. A., Méndez, M., Cisneros, M., Joseph-Bravo, P., & Charli, J. L. (1987). Regional distribution of the membrane bound pyroglutamate aminopeptidase degrading TRH in rat brain. Neuroscience Letters, 79, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Waksman, G., Hamel, E., Fournie-Zaluski, M. C., & Rocques, B. P. (1986). Autoradiographic comparison of the distribution of the neutral endopeptidase “enkephalinase” and μ and δ opioid receptors in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 83, 1523–1527.

    Article  PubMed  CAS  Google Scholar 

  • Waters, S. M., Konkoy, C., & Davis, T. P. (1996). Haloperidol and apomorphine differentially affect neurpeptidase activity. Journal of Pharmacology and Experimental Therapeutics, 277, 113–120.

    PubMed  CAS  Google Scholar 

  • Winkler, A., Buzás, B., Siems W.-E., Hedder, G., & Cox, B. M. (1998). Effect of ethanol drinking on the gene expression of opioid receptors, enkephalinase, and angiotensin-converting enzyme in two inbred mice strains. Alcoholism, Clinical and Experimental Research, 22, 1262–1271.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Joseph-Bravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gortari, P., Vargas, M.A., Martínez, A. et al. Stage-specific Modulation of Neprilysin and Aminopeptidase N in the Limbic System During Kindling Progression. J Mol Neurosci 33, 252–261 (2007). https://doi.org/10.1007/s12031-007-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0020-9

Keywords

Navigation