Skip to main content

Advertisement

Log in

Biofilm Formation and Virulence Determinants of Klebsiella oxytoca Clinical Isolates from Patients with Colorectal Cancer

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Objective

Biofilm formation has made the therapy of bacterial infections more difficult. The objective our study was assessment of pan-drug-resistant (PDR) Klebsiella oxytoca pathogenicity and virulence factors causing AAHC in patients with colorectal cancer (CRC).

Materials and Methods

Among a total of 300 healthy and 300 patients with antibiotic-associated hemorrhagic colitis (AAHC) and CRC, 200 K. oxytoca were identified during May 2015–January 2019. The virulence properties and biofilm formation among the isolates were investigated by phenotypic, PCR, and real-time PCR (RT-qPCR) techniques.

Results

The blaCTX-M1 (20%), blaSHV (11%), blaTEM1 (33%), and AmpC encoding CIT (2%) ESBL genes, carbapenemase-encoding genes blaIM (4%) and blaOXA-48 (2%), and colistin-resistant mcr-1 gene (2.5%) were detected. The virulence-encoding genes including fimA (80%), pilQ (100%), matB (100%), mrkA (80%), and npsB (100%) were amplified. Therefore, PDR K. oxytoca containing adhesins and toxin-encoding genes with ability of biofilm formation causing AAHC and CRC were isolated. There was a significant difference between healthy and patients with CRC regarding the presence of K. oxytoca (p = 00.221).

Conclusion

Bacterial enteric pathogens possibly play a role in CRC. Biofilm formation by K. oxytoca strains prevents the efficient infection elimination; therefore, rapid identification and control measure are chief requirements. Additionally, more investigations are necessary with this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hur E-Y, Jin Y, Jin T, Lee S-M. Development and evaluation of the automated risk assessment system for multidrug-resistant organisms (AutoRAS-MDRO). J Hosp Infect. 2017.

  2. Denervaud-Tendon V, Poirel L, Connolly LE, Krause KM, Nordmann P. Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates. J Antimicrob Chemother. 2017;72:2787–91.

    Article  CAS  Google Scholar 

  3. Nojoomi F, Ghasemian A. Effect of overgrowth or decrease in gut microbiota on health and disease. Arch PediatrInfect Dis Ther. 2016;4.

  4. Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents. 2011;37:415–9.

    Article  CAS  Google Scholar 

  5. Jayol A, Dubois V, Poirel L, Nordmann P. Rapid detection of polymyxin-resistant Enterobacteriaceae from blood cultures. J Clin Microbiol. 2016;54:2273–7.

    Article  CAS  Google Scholar 

  6. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30:557–96.

    Article  CAS  Google Scholar 

  7. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  Google Scholar 

  8. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance. 2015;20.

  9. Paterson DL, Harris P. Colistin resistance: a major breach in our last line of defence. Lancet Infect Dis. 2016;16:132.

    Article  Google Scholar 

  10. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance. 2016;21.

  11. Caratt-oli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance. 2017:22.

  12. Cannatelli A, D’Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother. 2013;57:5521–6.

    Article  CAS  Google Scholar 

  13. Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72:7107–14.

    Article  CAS  Google Scholar 

  14. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2010;54:177–83.

    Article  CAS  Google Scholar 

  15. Thiolas A, Bollet C, La Scola B, Raoult D, Pagès J-M. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob Agents Chemother. 2005;49:1354–8.

    Article  CAS  Google Scholar 

  16. Olaitan AO, Morand S, Rolain J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5.

  17. Hayakawa K, Marchobjective D, Divine GW, Pogue JM, Kumar S, Lephart P, et al. Growing prevalence of Providencia stuartii associated with the increased usage of colistin at a tertiary health care center. Int J Infect Dis. 2012;16:e646–e8.

    Article  Google Scholar 

  18. Merkier AK, Rodríguez MC, Togneri A, Brengi S, Osuna C, Pichel M, et al. Outbreak of a cluster with epidemic behavior due to Serratia marcescens after colistin administration in a hospital setting. J Clin Microbiol. 2013;51:2295–302.

    Article  Google Scholar 

  19. Samonis G, Korbila I, Maraki S, Michailidou I, Vardakas K, Kofteridis D, et al. Trends of isolation of intrinsically resistant to colistin Enterobacteriaceae and association with colistin use in a tertiary hospital. Eur J Clin Microbiol Infect Dis. 2014;33:1505–10.

    Article  CAS  Google Scholar 

  20. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8:e00543–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghasemian A, Mobarez AM, Peerayeh SN, Abadi ATB, Khodaparast S, Nojoomi F. Report of plasmid-mediated colistin resistance in Klebsiella oxytoca from Iran. Rev Med Microbiol. 2018;29:59–63.

    Google Scholar 

  22. O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49–79.

    Article  Google Scholar 

  23. Parker A, Cureoglu S, De Lay N, Majdalani N, Gottesman S. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol. 2017;105:309–25.

    Article  CAS  Google Scholar 

  24. Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, Eleventh Edition: American Society of Microbiology; 2015. p. 1253-73.

  25. Novais Â, Vuotto C, Pires J, Montenegro C, Donelli G, Coque TM, et al. Diversity and biofilm-production ability among isolates of Escherichia coli phylogroup D belonging to ST69, ST393 and ST405 clonal groups. BMC Microbiol. 2013;13:144.

    Article  Google Scholar 

  26. Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, et al. Characterization of TEM-, SHV-and AmpC-type β-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int J Food Microbiol. 2008;124:183–7.

    Article  CAS  Google Scholar 

  27. Ahmed AM, Nakano H, Shimamoto T. The first characterization of extended-spectrum β-lactamase-producing Salmonella in Japan. J Antimicrob Chemother. 2004;54:283–4.

    Article  CAS  Google Scholar 

  28. Liu Y, Yang Y, Chen Y, Xia Z. Antimicrobial resistance profiles and genotypes of extended-spectrum β-lactamase-and AmpC β-lactamase-producing Klebsiella pneumoniae isolated from dogs in Beijing,China. J Glob Antimicrob Resist. 2017;10:219–22.

    Article  Google Scholar 

  29. Larcombe S, Hutton ML, Lyras D. Involvement of bacteria other than Clostridium difficile in antibiotic-associated diarrhoea. Trends Microbiol. 2016;24:463–76.

    Article  CAS  Google Scholar 

  30. Janda JM. The genus Klebsiella: an ever-expanding panorama of infections, disease-associated syndromes, and problems for clinical microbiologist. Clin Microbiol & Case Report. 2015;1:2–7.

    Google Scholar 

  31. Stampfer L, Deutschmann A, Dür E, Eitelberger FG, Fürpass T, Gorkiewicz G, et al. Causes of hematochezia and hemorrhagic antibiotic-associated colitis in children and adolescents. Medicine. 2017;96.

  32. Tsai M-H, Chu S-M, Hsu J-F, Lien R, Huang H-R, Chiang M-C, et al. Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics. 2014;133:e322–e9.

    Article  Google Scholar 

  33. Yao X, Doi Y, Zeng L, Lv L, Liu J-H. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis. 2016;16:288–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Kufa University.

Funding

This study was funded by the University of Al-Qadisiyah, College of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaad K. Alkhudhairy.

Ethics declarations

This study was ethically approved by University of Al-Qadisiyah, College of Science.

Conflict of Interest

The authors received research grants from the University of Al-Qadisiyah, College of Science, Iraq.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A.F., Al-Saadi, A.G.M. & Alkhudhairy, M.K. Biofilm Formation and Virulence Determinants of Klebsiella oxytoca Clinical Isolates from Patients with Colorectal Cancer. J Gastrointest Canc 51, 855–860 (2020). https://doi.org/10.1007/s12029-019-00317-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-019-00317-7

Keywords

Navigation