Skip to main content

Advertisement

Log in

MicroRNA Expression Levels and Histopathological Features of Colorectal Cancer

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Introduction

Non-coding RNAs have opened a new window in cancer biology. MicroRNAs (miRNAs), as a family of non-coding RNAs, play an important role in the gene regulation. The aberrant expression of these small molecules has been documented to involve in colorectal cancer (CRC) pathogenesis. This study aimed to examine the expression of miRNAs in CRC and to correlate their expression levels with histological markers (Ki-67 and CD34).

Materials and Methods

Tumor tissues and matched normal adjacent tissues were collected from 36 patients with newly diagnosed CRC. Immunohistochemical (IHC) staining of tumor tissues was performed for Ki-67 (proliferation) and CD34 (angiogenesis) markers, and the immunoexpression staining scores were obtained. A polyadenylation SYBER Green quantitative real-time PCR technique was used to quantify the expression of a panel of five CRC-related miRNAs (hsa-miR-21, 31, 20a, 133b, and 145). Histopathological (H) scores and miRNA expression levels were correlated with clinicopathological features including the degree of differentiation, staging, and lymphovascular invasion.

Results

Our results showed the significant difference between the two groups for the expression level of hsa-miR-21, hsa-miR-31, hsa-miR-145, and miR-20a (P < 0.001), but not for hsa-miR-133b (P = 0.57). Further analysis revealed an inverse significant correlation between hsa-miR-145 and Ki-67 (r = − 0.942, P < 0.001). While a positive correlation was observed between hsa-miR-21 and Ki-67 (r = 0.920, P < 0.001), and hsa-miR-21 and CD34 (r = 0.981, P < 0.001). Also, a positive correlation between hsa-miR-31 and Ki-67 (r = 0.913, P < 0.001), hsa-miR-31 and CD34 (r = 0.798, P < 0.05), hsa-miR-20a and Ki-67 (r = 0.871, P < 0.001), and hsa-miR-20a and CD34 (r = 0.890, P < 0.001) was found.

Conclusion

Dysregulation of miRNAs and correlation with molecular histopathology indicate a biological role for miRNAs in various cellular processes including cell proliferation and angiogenesis in CRC development. On the other hand, the pattern of miRNA expression and its correlation with histological markers are potentially valuable to apply as diagnostic biomarkers for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akbari A, et al. Modulation of transforming growth factor-β signaling transducers in colon adenocarcinoma cells induced by staphylococcal enterotoxin B. Mol Med Rep. 2016;13(1):909–14. https://doi.org/10.3892/mmr.2015.4596.

    Article  CAS  PubMed  Google Scholar 

  2. Akbari A, Amanpour S, Muhammadnejad S, Ghahremani M, Ghaffari S, Dehpour A, et al. Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. DARU J Pharm Sci. 2014;22(1):47. https://doi.org/10.1186/2008-2231-22-47.

  3. Mobini GR, Ghahremani MH, Amanpour S, Dehpour AR, Akbari A, Hoseiniharouni SM, et al. Transforming growth factor beta-induced factor 2-linked X (TGIF2LX) regulates two morphogenesis genes, Nir1 and Nir2 in human colorectal. Acta Med Iran. 2016;54(5):302–7.

  4. Agah S, Akbari A, Talebi A, Masoudi M, Sarveazad A, Mirzaei A, et al. Quantification of plasma cell-free circulating DNA at different stages of colorectal cancer. Cancer Investig. 2017;35(10):625–32. https://doi.org/10.1080/07357907.2017.1408814.

  5. Akbari A, et al. Homeodomain protein transforming growth factor beta-induced factor 2 like, X-linked function in colon adenocarcinoma cells. Asian Pac J Cancer Prev: APJCP. 2017;18(8):2101.6.

    Google Scholar 

  6. Abastabar M, Akbari A, Akhtari J, Hedayati MT, Shokohi T, Mehrad-Majd H, et al. In vitro antitumor activity of patulin on cervical and colorectal cancer cell lines. MAZU-CMM. 2017;3(1):25–9.

    Article  CAS  Google Scholar 

  7. Sagaert X. Prognostic biomarkers in colorectal cancer: where do we stand? Virchows Arch. 2014;464(3):379–91. https://doi.org/10.1007/s00428-013-1532-z.

    Article  CAS  PubMed  Google Scholar 

  8. Zaha DC. Significance of immunohistochemistry in breast cancer. World J Clin Oncol. 2014;5(3):382–92. https://doi.org/10.5306/wjco.v5.i3.382.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Espinosa CES, Slack FJ. Cancer issue: the role of microRNAs in cancer. Yale J Biol Med. 2006;79(3–4):131.

    CAS  Google Scholar 

  10. Zhou F, Li S, Meng HM, Qi LQ, Gu L. MicroRNA and histopathological characterization of pure mucinous breast carcinoma. Cancer Biol Med. 2013;10(1):22–7. https://doi.org/10.7497/j.issn.2095-3941.2013.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fadakar P, Akbari A, Ghassemi F, Mobini GR, Mohebi M, Bolhassani M, et al. Evaluation of SD-208, a TGF-β-RI kinase inhibitor, as an anticancer agent in retinoblastoma. Acta Med Iran. 2016;54(6):352–8.

  12. Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010;42(8):1273–81. https://doi.org/10.1016/j.biocel.2009.12.014.

    Article  CAS  PubMed  Google Scholar 

  13. Berger F, Reiser MF. Micro-RNAs as potential new molecular biomarkers in oncology: have they reached relevance for the clinical imaging sciences. Theranostics. 2013;3(12):943–52. https://doi.org/10.7150/thno.7445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akbari A, Ghahremani MH, Mobini GR, Abastabar M, Akhtari J, Bolhassani M, et al. Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci. 2015;18(9):856–61.

  15. Akbari A, et al. Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. DARU J Pharm Sci. 2014;22(1):1.

    Article  CAS  Google Scholar 

  16. Akbari, A., et al. Staphylococcus aureus enterotoxin B down-regulates the expression of transforming growth factor-beta (TGF-β) signaling transducers in human glioblastoma. Jundishapur J Microbiol, 2016. 9(5).

  17. Karimi A, Majidzadeh-A K, Madjd Z, et al. Effect of copper sulfate on expression of endogenous L1 retrotransposons in HepG2 cells (hepatocellular carcinoma). Biol Trace Elem Res. 2015;165:131–4.

    Article  CAS  PubMed  Google Scholar 

  18. Faghihloo E, Akbari A, Adjaminezhad-Fard F, Mokhtari-Azad T. Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines. Iran J Basic Med Sci. 2016;19(6):601–7.

    PubMed  PubMed Central  Google Scholar 

  19. Mirzaei A, Madjd Z, Kadijani AA, Tavakoli-Yaraki M, Modarresi MH, Verdi J, et al. Evaluation of circulating cellular DCLK1 protein, as the most promising colorectal cancer stem cell marker, using immunoassay based methods. Cancer Biomark. 2016;17(3):301–11. https://doi.org/10.3233/CBM-160642.

  20. Mirzaei A, Madjd Z, Amini Kadijani A, Alinaghi S, Akbari A, et al. Cancer stem cell’s potential clinical implications. Int J Cancer Manag. 2017;10(1):e5897. https://doi.org/10.17795/ijcp-5897.

    Article  Google Scholar 

  21. Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16(4):376–88. https://doi.org/10.1097/01.MP.0000062859.46942.93.

    Article  PubMed  Google Scholar 

  22. De Mattos-Arruda L, Cortes J, Santarpia L, Vivancos A, Tabernero J, Reis-Filho JS, et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol. 2013;10(7):377–89. https://doi.org/10.1038/nrclinonc.2013.80.

  23. Llombart-Bosch, A., et al., Cancer: clinical background and key challenges, in Cancer systems biology, bioinformatics and medicine. 2011, Springer. p. 29–93.

  24. Molina R, Filella X, Aug&eacute JM, Fuentes R, Bover I, Rifa J, et al. Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Tumor Biol. 2003;24(4):209–18. https://doi.org/10.1159/000074432.

  25. Choi WW, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol. 2005;18(1):143–52. https://doi.org/10.1038/modpathol.3800253.

    Article  CAS  PubMed  Google Scholar 

  26. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15(1):38. https://doi.org/10.1186/s12935-015-0185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. zur Hausen H. The role of microRNAs in human cancer. Int J Cancer. 2008;122(5):ix–x.

  28. Schuster C, Budczies J, Faber C, Kirchner T, Hlubek F. MicroRNA expression profiling of specific cells in complex archival tissue stained by immunohistochemistry. Lab Investig. 2011;91(1):157–65. https://doi.org/10.1038/labinvest.2010.134.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, et al. In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS One. 2013;8(8):e71472. https://doi.org/10.1371/journal.pone.0071472.

  30. Landskroner-Eiger S, Moneke I, Sessa WC. miRNAs as modulators of angiogenesis. Cold Spring Harbor Perspect Med. 2013;3(2):a006643. https://doi.org/10.1101/cshperspect.a006643.

    Article  CAS  Google Scholar 

  31. Buscaglia LEB, Li Y. Apoptosis and the target genes of miR-21. Chin J Cancer. 2011;30(6):371–80. https://doi.org/10.5732/cjc.30.0371.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18(3):350–9. https://doi.org/10.1038/cr.2008.24.

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104(4):476–87. https://doi.org/10.1161/CIRCRESAHA.108.185363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(3):251–5. https://doi.org/10.1007/s12265-010-9169-7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Asangani I, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36. https://doi.org/10.1038/sj.onc.1210856.

    Article  CAS  PubMed  Google Scholar 

  36. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 2007;72(5–6):397–402. https://doi.org/10.1159/000113489.

  37. Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9(1):163. https://doi.org/10.1186/1471-2407-9-163.

  38. Liu L-Z, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139. https://doi.org/10.1371/journal.pone.0019139.

  39. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604–13. https://doi.org/10.1128/MCB.16.9.4604.

  40. Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development. 1992;114(2):521–32.

    CAS  PubMed  Google Scholar 

  41. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359(6398):845–8. https://doi.org/10.1038/359845a0.

    Article  CAS  PubMed  Google Scholar 

  42. Harris VK, Coticchia CM, Kagan BL, Ahmad S, Wellstein A, Riegel AT. Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction pathways. J Biol Chem. 2000;275(15):10802–11. https://doi.org/10.1074/jbc.275.15.10802.

    Article  CAS  PubMed  Google Scholar 

  43. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96. https://doi.org/10.1038/nrm3330.

    Article  CAS  Google Scholar 

  44. Xia C, Meng Q, Cao Z, Shi X, Jiang BH. Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. J Cell Physiol. 2006;209(1):56–66. https://doi.org/10.1002/jcp.20707.

    Article  CAS  PubMed  Google Scholar 

  45. Wang S, Olson EN. AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19(3):205–11. https://doi.org/10.1016/j.gde.2009.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng D, Zhao S, Tang H, Zhang D, Sun H, Yu F, et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget. 2016;7(29):45199–213. https://doi.org/10.18632/oncotarget.9900.

  47. Zhang GJ, et al. miR-20a is an independent prognostic factor in colorectal cancer and is involved in cell metastasis. Mol Med Rep. 2014;10(1):283–91. https://doi.org/10.3892/mmr.2014.2144.

    Article  CAS  PubMed  Google Scholar 

  48. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38(9):1060–5. https://doi.org/10.1038/ng1855.

  49. Suárez Y, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci. 2008;105(37):14082–7. https://doi.org/10.1073/pnas.0804597105.

    Article  PubMed  Google Scholar 

  50. Kuhnert F, Kuo CJ. miR-17-92 angiogenesis micromanagement. Blood. 2010;115(23):4631–2. https://doi.org/10.1182/blood-2010-03-276428.

    Article  CAS  PubMed  Google Scholar 

  51. Wong H-KA, Fatimy RE, Onodera C, Wei Z, Yi M, Mohan A, et al. The cancer genome atlas analysis predicts microRNA for targeting cancer growth and vascularization in glioblastoma. Mol Ther. 2015;23(7):1234–47. https://doi.org/10.1038/mt.2015.72.

  52. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. https://doi.org/10.1158/0008-5472.CAN-05-1783.

  53. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Note: Susan M. O'Connor and Nicholas G. van Holst Pellekaan contributed equally to this work. Mol Cancer Res. 2003;1(12):882–91.

    CAS  PubMed  Google Scholar 

  54. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y. Decreased expression of microRNA-143 and-145 in human gastric cancers. Oncology. 2009;77(1):12–21. https://doi.org/10.1159/000218166.

    Article  CAS  PubMed  Google Scholar 

  55. Liu L-Z, Hu XW, Xia C, He J, Zhou Q, Shi X, et al. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med. 2006;41(10):1521–33. https://doi.org/10.1016/j.freeradbiomed.2006.08.003.

  56. Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2012;40(2):761–74. https://doi.org/10.1093/nar/gkr730.

  57. Yu Z, Tozeren A, Pestell RG. Function of miRNAs in tumor cell proliferation, in microRNA in cancer. 2013, Springer. p. 13–27.

  58. Zhou Q, Liu LZ, Fu B, Hu X, Shi X, Fang J, et al. Reactive oxygen species regulate insulin-induced VEGF and HIF-1α expression through the activation of p70S6K1 in human prostate cancer cells. Carcinogenesis. 2006;28(1):28–37. https://doi.org/10.1093/carcin/bgl085.

Download references

Funding

This study was funded by the Iran University of Medical Sciences (Grant No. 26649).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abolfazl Akbari or Ali-Akbar Zare.

Ethics declarations

This project was approved by the ethical and research committee (IR.IUMS.REC 1394.26649).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, S.S., Akbari, A., Zare, AA. et al. MicroRNA Expression Levels and Histopathological Features of Colorectal Cancer. J Gastrointest Canc 50, 276–284 (2019). https://doi.org/10.1007/s12029-018-0055-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-018-0055-x

Keywords

Navigation