Skip to main content
Log in

DNMT3B −579 G>T Promoter Polymorphism and Risk of Gallbladder Carcinoma in North Indian Population

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Aim

Carcinoma of gallbladder (GBC) is a relatively rare but highly fatal disease. The DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) −579 G>T promoter polymorphism (rs1569686) influences gene function and has been associated with various malignancies. Present population-based case-control study was undertaken to examine the potential association of DNMT3B −579 G>T variation with GBC in North Indian population.

Methods

Genotypes and allelic frequencies of the DNMT3B −579 G>T polymorphism were determined for 212 GBC patients and 219 controls using PCR-RFLP. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated for the association of DNMT3B polymorphism with GBC. Analysis of potential transcription factor binding sites was also identified in the region harboring the polymorphism.

Results

The DNMT3B −579 G>T polymorphism was found to be non-significantly associated with an overall increased risk of GBC (OR = 1.10 and 1.56 for T/G and G/G genotypes, respectively, P trend = 0.227). The increased risk was predominant in both male and female cohorts and also non-significantly in GBC patients with gallstone status (OR = 1.44; P = 0.280, OR = 1.06; P = 0.804 and OR = 1.45; P = 0.143, respectively).

Conclusion

DNMT3B −579 G>T polymorphism may alter susceptibility to GBC although it may not play a major role in the pathoetiology of this disease in North Indian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lazcano-Ponce EC, Miquel JF, Munoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51:349–64.

    Article  CAS  PubMed  Google Scholar 

  2. Hoi-Hung C, Tin-Lap L, Owen MR, Wai-Yee C. DNA methylation of cancer genome Birth Defects Research Part C: Embryo Today. Reviews. 2009;87:335–50.

    Google Scholar 

  3. Yen RW, Vertino PM, Nelkin BD, Yu JJ, el-Deiry W, Cumaraswamy A, et al. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 1992;20:2287–91.

    Article  CAS  PubMed  Google Scholar 

  4. Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236:87–95.

    Article  CAS  PubMed  Google Scholar 

  5. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.

    Article  CAS  PubMed  Google Scholar 

  6. Roll JD, Rivenbark AG, Jones WD, Coleman WB. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008;7:15.

    Article  PubMed  Google Scholar 

  7. Tian Z, Zhang ZY, Li L, Li J (2006) [Expression of DNA methyltransferases in salivary adenoid cystic carcinoma and its association with the CpG islands methylation of tumor suppressor genes] Zhonghua Kou Qiang Yi Xue Za Zhi 41:411–415

    Google Scholar 

  8. Vallbohmer D, Brabender J, Yang D, Schneider PM, Metzger R, Danenberg KD, et al. DNA methyltransferases messenger RNA expression and aberrant methylation of CpG islands in non-small-cell lung cancer: association and prognostic value. Clin Lung Cancer. 2006;8:39–44.

    Article  CAS  PubMed  Google Scholar 

  9. Xiong Y, Dowdy SC, Xue A, Shujuan J, Eberhardt NL, Podratz KC, et al. Opposite alterations of DNA methyltransferase gene expression in endometrioid and serous endometrial cancers. Gynecol Oncol. 2005;96:601–9.

    Article  CAS  PubMed  Google Scholar 

  10. Yakushiji T, Uzawa K, Shibahara T, Noma H, Tanzawa H. Over-expression of DNA methyltransferases and CDKN2A gene methylation status in squamous cell carcinoma of the oral cavity. Int J Oncol. 2003;22:1201–7.

    CAS  PubMed  Google Scholar 

  11. Guo X, Zhang L, Wu M, Wang N, Liu Y, Er L, et al. Association of the DNMT3B polymorphism with colorectal adenomatous polyps and adenocarcinoma. Mol Biol Rep. 2010;37:219–25.

    Article  CAS  PubMed  Google Scholar 

  12. Hong YS, Lee HJ, You CH, Roh MS, Kwak JY, Lee MJ, et al. DNMT3b 39179GT polymorphism and the risk of adenocarcinoma of the colon in Koreans. Biochem Genet. 2007;45:155–63.

    Article  CAS  PubMed  Google Scholar 

  13. Lee SJ, Jeon HS, Jang JS, Park SH, Lee GY, Lee BH, et al. DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis. 2005;26:403–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Rodriguez M, Kim ES, Xu Y, Bekele N, El-Naggar AK, et al. A novel C/T polymorphism in the core promoter of human de novo cytosine DNA methyltransferase 3B6 is associated with prognosis in head and neck cancer. Int J Oncol. 2004;25:993–9.

    CAS  PubMed  Google Scholar 

  15. Fan H, Liu DS, Zhang SH, Hu JB, Zhang F, Zhao ZJ. DNMT3B 579 G > T promoter polymorphism and risk of esophagus carcinoma in Chinese World. J Gastroenterol. 2008;14:2230–4.

    CAS  Google Scholar 

  16. International Union Against Cancer (UICC) (2002) TNM classification of malignant tumours, 6th ed, Sobin LH, Wittekind Ch (ed.), New York, Wiley-Liss:pp. 184–187

  17. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.

    Article  CAS  PubMed  Google Scholar 

  18. Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1995;11:375–86.

    Article  Google Scholar 

  19. Brennan P. Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis. 2002;23:381–7.

    Article  CAS  PubMed  Google Scholar 

  20. Campbell MJ, Julious SA, Altman DG. Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. BMJ. 1995;311:1145–8.

    CAS  PubMed  Google Scholar 

  21. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.

    Article  PubMed  Google Scholar 

  22. Grabe N. AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol. 2002;2:S1–15.

    PubMed  Google Scholar 

  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. 1994;22:4673–80.

    Article  CAS  PubMed  Google Scholar 

  24. National Cancer Registry Programme (2002) Two-year report of the Population Based Cancer Registries 1997–1998. New Delhi: Indian Council of Medical Research

  25. Hsing AW, Sakoda LC, Rashid A, Andreotti G, Chen J, Wang BS, et al. Variants in inflammation genes and the risk of biliary tract cancers and stones: a population-based study in China. Cancer Res. 2008;68:6442–52.

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava A, Srivastava K, Pandey S, Choudhuri G, Mittal B. Single-nucleotide polymorphisms of DNA repair genes OGG1 and XRCC1: association with gallbladder cancer in North Indian population. Ann Surg Oncol. 2009;16:1695–703.

    Article  PubMed  Google Scholar 

  27. Srivastava K, Srivastava A, Pandey S, Kumar A, Mittal B. Functional polymorphisms of the cyclooxygenase (PTGS2) gene and risk for gallbladder cancer in a North Indian population. J Gastroenterol. 2009;44:774–80.

    Article  CAS  PubMed  Google Scholar 

  28. Park SK, Andreotti G, Sakoda LC, Gao YT, Rashid A, Chen J, et al. Variants in hormone-related genes and the risk of biliary tract cancers and stones: a population-based study in China. Carcinogenesis. 2009;30:606–14.

    Article  CAS  PubMed  Google Scholar 

  29. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7.

    Article  CAS  PubMed  Google Scholar 

  30. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.

    Article  CAS  PubMed  Google Scholar 

  31. Yanagisawa Y, Ito E, Yuasa Y, Maruyama K. The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochim Biophys Acta. 2002;1577:457–65.

    CAS  PubMed  Google Scholar 

  32. Diehl AK. Gallstone size and the risk of gallbladder cancer. JAMA. 1983;250:2323–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The study was supported by fellowship grants from Counsel of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), Government of India.

Declaration of Competing Interests

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, K., Srivastava, A. & Mittal, B. DNMT3B −579 G>T Promoter Polymorphism and Risk of Gallbladder Carcinoma in North Indian Population. J Gastrointest Canc 41, 248–253 (2010). https://doi.org/10.1007/s12029-010-9156-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-010-9156-x

Keywords

Navigation